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Abstract

Surfing the World Wide Web (WWW) involves traversing hyperlink connections among
documents. The ability to predict surfing patterns could solve many problems facing producers
and consumers of WWW content. We analyzed WWW server logs for a WWW site, collected
over ten days, to compare different path reconstruction methods and to investigate how past
surfing behavior predicts future surfing choices. Since log files do not explicitly contain user
paths, various methods have evolved to reconstruct user paths. Session times, number of clicks
per visit, and Levenshtein Distance analyses were performed to show the impact of various
reconstruction methods. Different methods for measuring surfing patterns were also compared.
Markov model approximations were used to model the probability of users choosing links
conditional on past surfing paths. Information-theoretic (entropy) measurements suggest that
information is gained by using longer paths to estimate the conditional probability of link choice
given surf path. The improvements diminish, however, as one increases the length of path
beyond one. Information-theoretic (Total Divergence to the Average entropy) measurements
suggest that the conditional probabilities of link choice given surf path are more stable over time
for shorter paths than longer paths. Direct examination of the accuracy of the conditional
probability modelsin predicting test data also suggests that shorter paths yield more stable

models and can be estimated reliably with less data than longer paths.
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1. Introduction

Surfing the World Wide Web (WWW) involves traversing the connections among hyperlinked
documents. It isone of the most common ways of accessing WWW content. Theories and
models are beginning to explain how observed patterns of surfing behavior emerge from
fundamental human information foraging processes [Huberman et al. 1998; Pirolli and Card

in press]. The ability to predict surfing patterns could be instrumental in solving many problems
facing producers and consumers of WWW content. For instance, web site designs could be
evaluated and optimized by predicting how users will surf through their structures. WWW client
and server applications could reduce user perceived network latency by pre-fetching content
predicted to be on the surfing path of individual users or groups of like-minded users. Systems
and user interfaces could be enhanced by the ability to recommend content of interest to users, or
by displaying information in away that best matches users’ interests. Here, we present several

analyses investigating how prior surfing behavior predicts future surfing choices.

[Insert Figure 1 around here]

presents a conceptual model of the surfing process used in spreading activation models of the
diffusion of surfersthrough aweb site [Firolli et al. 1996; Huberman et al. 1998]. Other models
[Brin and Page 1998; Kleinberg 1998; Cunha and Joccoud 1997; Padmanabhan and Mogul 1996]
can be shown to be variants of this conceptual model. illustrates the elements of the spreading
activation model: (a) users begin surfing a web site starting from different entry pages (a), (b) as
they surf the web site, users arrive at specific web site pages having traveled different surfing
paths (b), (c) surfers choose to traverse possible paths leading from pages they are currently
visiting (c), and (d) after surfing through some number of pages, surfers stop or go to another

web site (d). Elsewhere [Huberman and Adamic 1998], models have been developed to address
1



how users choose new sites and which pages they visit first (a). Models have also been
developed [Huberman et al. 1998] to characterize the distribution of the number of pages visited
by users at web sites (d). Here we concern ourselves with how past surfing paths (b) may

contain information that predicts future surfing paths (c).

Surfing paths can be conceptualized as traversals of the graph representing the hyperlink
structure of aweb site, where nodes represent WWW pages and edges represent hyperlinks
among pages. A ssimple predictive model might assume that users visiting each page will
randomly choose which linksto follow, resulting in auniform distribution of userstraversing
each link from a page. In this model the transition probabilities associated with each link, (e.g.,
P1, P2, P in ¢) are ssimply one divided by the number of links emanating from a page. Several
predictive models [Brin and Page 1998; Huberman et al. 1998; Cunha and Joccoud 1997,
Padmanabhan and Mogul 1996] make a Markov-like assumption that the choice of the next page
to surf is dependent only on the last page. At least afew models [Brin and Page 1998] assume
uniformly weighted transitions down links. The advantage of these models is that they can be
constructed directly from the web site’s hyperlink graph without collecting usage data, thereby

keeping computational and storage requirements to a minimum.

However, given that it is possible to record the paths of users surfing through a web site, non-
uniform transition probabilities can be estimated for the links emanating from each page (e.g., p,
p2, and ps in ¢). With this dightly more complicated model, a user visiting a particular pageis
predicted to visit linked pages according to the estimated transition probabilities. This
assumption was made in the spreading activation model presented in Huberman et al. [1998].
Oneissue we investigate is the degree to which observed surfing transitions deviate from the

assumption that surfers randomly choose linked pages.



Another assumption of Markov-like surfing modelsis that surfing paths leading up to the
currently visited page do not influence transition probabilities. Kantor [1997] challenges this
notion by proposing a system that matches the observed surfing path of a user against the
recorded paths of other users. Such a system would assume that future sequences of a user’s
surfing behavior would mirror paths observed by prior users. We present analyses that test

whether there is predictive power to be gained by using longer prior surfing paths in prediction.

If predictive surfing models are based on user data to estimate transition probabilities, then we
may also be concerned with the reliability and sensitivity of these estimates. We will present
analyses concerning the impact of the size and span of the data sets used to construct transition
estimates. We will also investigate how well estimates constructed over one span of time predict

events at various distances into the future.

Before turning to these analyses, however, we first investigate the basic techniques that provide
data on surfing patterns. A variety of methods have been used to extract surfing patterns from
WWW logs, ranging from heuristics to the analysis of cookies. Very littleis known about the
quality of these measurement techniques. While descriptive statistics like the number of visits
per page may not be affected by the choice of path determination algorithms, other statistics like
the total visit time per user and the number of clicks per visit may be affected. Failureto
accurately reconstruct user paths within Web sites makes accurate modeling of surfing
problematic, if not erroneous. In the next section, we use several analytical methods to explore

the reliability and impact of various path construction techniques.

2. Measurement of Surfersand Their Paths

In order to examine the assumptions embedded within various models of surfing behaviors, the

paths of users through web sites have to be correctly identified. Despite nearly all web servers



being instrumented to record which web pages are requested, the task of gathering reliable usage
information from web sites can be non-trivial, especially for path information [Pitkow 1997].
The presence of intermediary caches and proxies, the lack of client cookie compliance, the use of
obfuscation and anonomizing tools, and visits by robots all increase the difficulty in piecing
together the sequence of user requests from server logs. Researchers attempting to characterize
and model the Web employ a variety of methods and assumptions to reconstruct the paths of
surfers often times yielding different results. We hypothesized the some of the difference in

these results may be attributed to different path construction methods.

This portion of the paper will quickly review the data generally recorded in server access logs
and their limitations, followed by a description and comparison of various path construction
methods. Specifically, we use the Xerox.com Web site to document the incidence rate of various
assumptions, measure the impact of these methods on session times and clicks per session, and

compute the similarity of generated paths using L evenshtein Distances [L evenshtein 1966].

Several limitations of this study are worth mentioning. First, the purpose of these resultsisto
demonstrate the impact that various agorithms have on basic characterizations and subsequently,
on the models constructed of Web surfing. We are not attempting to make generalizations and
recommendations that extend beyond the Web site used in our investigation. Rather, we motivate
the need for careful consideration of the issues around path reconstruction and the techniques
used to analyze paths. Second, we readily admit that other schemes exist for determining and
analyzing user pathsthat are not included in our study, some of which may be better than the
methods presented here. Again, our purposeisto illustrate that quality of path reconstruction

matters, not to propose a specific path reconstruction methodology.

2.1 Recorded Log File Data



While web servers have the capability to record vast amounts of information, relatively few
fields aretypically recorded. Several formats have evolved from the Common L ogfile Format
(CLF), including the Extended L ogfile Format (ECLF) as well as a variety of customized

formats. For the most part, the following fields are recorded by web servers:

the time of the request in seconds,

the machine making the request recorded as either the domain name or |P address,

the name of the requested URL as specified by the client,

the size of thetransferred URL,

and various HT TP related information like version number, method, and return status.

Various web servers aso enable other fields to be recorded, the most common of which are:

» the URL of the previoudy viewed page (the "referrer” field),

» theidentity of the software used to make the request (the "user agent” field),

« and aunique identifier issued by the server to each client (typically a"cookie").

While these fields are useful to analyze and provide reasonable characterizations, several
enhancements would facilitate analysis that is more reliable and accurate as well as facilitate path
reconstruction efforts. First, the unit of time recorded should encode afiner granularity like
milliseconds or a site definable metric like ticks/second. Thisis especially important for heavily
trafficked sites, where hundreds of requests per second can occur. Second, the URL recorded is
the URL as requested by the user, not the location of thefile returned by the server. This

behavior can cause false tabulation for pages when the requested page contains relative



hyperlinks, symbolic links, and/or hard coded expansion/trandation rules, e.g., directories do not
alwaystrandate to "index.html." It also can lead to two paths being considered different when in
actuality they contain the same content. While both pieces of information are useful, the

canonical file system-based URL returned by the server is arguably more useful as it removes the

ambiguity of what resource was returned to the user.

The content of the information contained in the referrer field can be quite varied. Various
browsers and proxies do not send this information to the server for privacy and other reasons. In
addition, the value of the referrer field is undefined for cases in which the user requests a page by
typing in the URL, selects a page from their Favorites’Bookmarks list, or uses other interface
navigational aids like the history list. Furthermore, several browsers provide interesting values
for thereferrer field. Toillustrate, suppose a user selects alisting for the Xerox Corporation on
Y ahoo. Inrequesting the Xerox splash page, the URL for the page on Y ahoo is provided as the
value for the referrer field. Now suppose the user clicks on the Products page, returnsto the
Xerox splash page, and reloads the splash page. In severa popular browsers, the referrer field
for Yahoo isincluded in the second request for the Xerox splash page although the last page
viewed on the user’'s surfing path was the Product page in the Xerox site. If one chooses to
reconstruct paths by relying upon the referrer field, the paths of two users may be identified
instead of only one. Given these limitations, strong reliance upon the information in the referrer

field may be more problematic than one would initially expect.

The user agent field also suffers from imprecise semantics, different implementations, and
missing data. This can partially be attributed to the use of the field by browser vendors to
perform content negotiation. Given that the rendering of HTML differsfrom browser to
browser, servers have the ability of altering the HTML based upon which browser is on the other

end. Consequently, the user agent field may contain the name of multiple browsers. Some



proxies also append information to thisfield. Aswe shall later show, the value of the user agent
field can vary for requests made by the same user using the same Web browser. Adding to the
confusion, there is no standardized manner to determine if requests are made by autonomous
agents (e.g., robots), semi-autonomous agents acting on behalf of users (e.g., copying a set of
pages for off-line reading), or humans following hyperlinksin real time. Clearly, it isimportant

to be able to identify these classes of requests to construct accurate models of surfing behaviors.

Although cookies were initially implemented to facilitate shopping baskets, a common use of
cookiesisto uniquely identify users within aweb site. Cookieswork in the following manner.
When a person visits a cookie enabled web site, the server replies with the content and a unique
identifier called a cookie, which the browser stores on the user’s machine. On subsequent
reguests to the same web site, the browser software includes the value of the cookie with each
request. Because the identifier is unique, all requests that were are with the same cookie are
known to be from the same browser. Since multiple people may use the same browser, each
cookie may not actually represent a single user, but most web sites are willing to accept this
limitation and treat each cookie asa single user. Recently, browser vendors have provided users
with controls to select the cookie policy that mapsto their privacy preferences. This enables
usersto choose various levels of awareness when visiting a server that issues cookies in addition
to alowing users completely disable their browser from sending cookies. Consequently, unless a
Site requires people to use cookies to receive content, the cookie field may be null, which leaves
the task of identifying user paths to relying upon the other recorded fields. We shall now explore

various methods of reconstructing user paths.

2.2 Reconstructing User Paths



Given the limitations of the information recorded in Web accesslogs, it is not surprising that
sites require users to adhere to cookies or defeat caching to gain more accurate usage
information. Still, numerous sites either do not use cookies or do not require users to accept
cookie to gain access to content. In these cases, determining unique users and their paths
through aweb siteistypically done heuristically. Later, we provide an empirical analysis of the
tradeoffs that exist using different methods of identifying users and their clicks streams. Clearly,
without the accurate reconstruction of user paths, subsequent analyses and attempts to model

surfing may be seriously flawed.

2.3 UsageData

All analyses reported in this paper were computed from tens days worth of usage data acquired
from the Xerox.com web site from May 10 through May 19, 1998. The site received between
220,026 and 651,640 requests per day during this period. Later in this paper, we explore various
alternative methods for tabulating usage statistics. Over this period, there were 16,051 files on
the xerox.com web site, of which 8,517 pages were HTML. The web site issues cookies to users

only upon entry to the Xerox splash page and records the user agent field for each request.

2.4 IP and Domain Name Counting

The most simplistic assumption to make about usersis that each |P address or domain name
represents a unique user asin [Manley et al. 1997; Arlitt and Williamson 1996]. Using this
method, all the requests made by the same host are treated as through from a single user. When
anew host is detected, anew user profileis created and the corresponding requests are

associated to the new user. We call this heuristic "IP”.



Several methods that use additional information recorded in the access logs or other heuristics
are also possible. One refinement isto use the user agent field. Using this method, new users
are identified as above as well as when requests coming from the same machine have different
user agents. We call this method "IP-Agent.” Another refinement is to place session timeouts on
requests made from the same machine. Theintuition isthat if a certain amount of time has
elapsed, then the old user has left the site and a new user has entered. Empirically derived
timeouts of 25 minutes (1 and 1/2 standard deviates away from a mean of 9.2 minutes between
user interface requests) were first used by [Catledge and Pitkow 1995]. Many commercial log
file analysis programs use similar timeout periods between requests before starting a new user

profile from the same host. We refer to this method as "I P-Timeout."

Given that the majority of users access the Web either through home viaan ISP or via afirewall
at work [Pitkow and Kehoe 1996], we hypothesized that these methods would not provide an
accurate identification of users or accurate reconstruction of user paths. Another problem with
using |P or domain addresses as user identifiersis that many 1SPs load balance user requests
through anumber of proxies. Within one session, a user may rotate between several proxies,
each with a different IP and domain name. An example of this occurs with American Online
(AOL), where users are directed through prefix permuted proxy addresses. Typical entriesin log
filesfor such cases contain hosts like "ww-ta01.proxy.aol.com” and "ww-tl05.proxy.aol.com".
On arandomly selected day during May 1998, the Xerox Web site observed over 230 different
hosts within the "aol.com" domain. This problem also occurs in environments where IP
addresses are assigned dynamically with short timeouts. One method for dealing with changing
machine namesis to chop the prefixes off domain names and, based upon the IP class (A, B or

B), chop the suffix off IP addresses. We call this method "Host-munging"”.



When using these methods for identifying users, the following situations occur when

sequentially processing access logs:

1) anew IP addressis encountered (assumethisis anew user),

2) an already processed | P address is encountered

a) the user agent matches prior requests (assume thisis the same user),

b) the user agent filed does not match any prior requests form the same IP (assume thisisa

New user)

c) when a session isterminated due to atimeout, assume a new user has entered the site.

For thisanalysis, alist of 1P addresses’domain names, user agents, and last access times are

maintained while processing the log file.

Table 1 shows the incidence rate of these cases using the data from the Xerox.com May 1998
data set. Two sets of occurrence rates are presented in Table 1. The first shows the average
occurrence rate when al files (Web pages and all embedded images) are taken into account and
the second shows the results when just Web pages are included in the analysis. Note that higher
values do not trandate to "better.” Very little variation in the percentages reported occurred
acrossthe data set. As apercentage of all requests, between 0.93% to 1.73% are from new hosts
with the remainder being repeat requests from these hosts. Using host-munging reduces the
number of new hosts encountered by nearly a percentage point. Only 22,000 of the 4.8 million

requests (0.47%) resulted in a session timeout using an inactivity period of 25 minutes.

[Insert Table 1 around here]
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When page views are used as the primary unit of analysis, the number of new hosts increases
significantly to 10.38% of all page requests. That is, one out of every ten page requests were
from new users. When host-munging is used, the number of new hosts decreases to 5.63%, with
94.37% of the remaining requests being issued from one of these hosts. When the combination of
host-munging and timeouts are used, the number of timeouts decreases to 3.30%. These findings
imply that half of the new hosts and timeouts were from hosts in the same domain/IP address
space. From thiswe can infer, that alarge number of Xerox web site users either connect to the
Web via | SPs with load balancing proxies, or that alarge number of different users access the
site from within the same domain as would occur with alarge company, or that some

combination of both cases exist.

Regardless, a significant number of page requests resulted in ambiguous cases, where it is not

possible to determine the existence of new users with certainty. While we expect the incidence
rate to vary considerably from Web siteto Web site, we find the results concerning since, as we
shall see, these I P-based methods and other | P-based derivatives are used in cases where unique

identifiers like cookies are not present.

2.5 Cookie Counting

When processing a site that is capable of issuing cookies and logging user agents, several
scenarios exist (see Table 2). We denote this class of user identification scenarios "Cookie". For
thisanalysis, we maintain alist of hosts, agents, and cookies while processing log files, so
changes and new entities can be detected. While the processing of cookies may intuitively seem

simple, it isactually a bit more complicated.

Several cases are possible when a previously encountered cookie is processed. If therequest is

coming from the same host regardless of the user agent, the request is being issued by the same
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user (Case 1). Thisistrue because a unique cookieisissued to only one browser. If the user
agent field remains the same but the host changes, it is still the same user (Case 2A) and some
form of IP/domain name changing is occurring. This often occurs with users behind firewalls
and | SPs that |oad-balance proxies. However, if we have the same cookie with adifferent user
agent, then an error has most likely occurred as cookies are not shared across browsers (Case
2B). If no cookies are present, we resort to the same set of heuristics used by the IP method. If
the request comes from a known host, then we could have a new user or the same user (Case 3),
otherwise the request is from adifferent user (Case 4). It isimportant to point out that these

latter two cases could also be issued from non-cookie compliant crawling software.

[Insert Table 2 around here]

An interesting set of cases occurs when a new cookie is encountered. If the request isfrom a
host that has already been processed and the previous value of the cookie was "-" or "null" and
the user agent isthe same, it isfair to conclude that the request is from a new user that just
received their first cookie from the server in the previous request (Case 5A). If the client is not
using cookie obfuscation software, one would expect the following requests from this user to all
contain the same cookie (Case 1). However, suppose the previous value from the same host and
agent was a different cookie, it could be the same user obfuscating cookie requests, or a new user
from the same | SP using the same browser version and platform as the user from the previous
request. Barring any other piece of supporting evidence like the referrer field or consulting the
site'stopology, it isdifficult to determine which is the correct scenario (Case 5B). If the user
agent is different from the previous request, but accompanies a new cookie from the same host, it

isfair to assume that a new user has entered the site (Case 5C). Of course, a new cookie from a

12



new host regardless of the agent is a new user (Case 6) and session timeouts can till occur (Case

7).

Table 3 shows the results of processing the ten days of Xerox.com data. When all requested files
and cookies are used, 86.56% of all requests originate from the same user on the same host (Case
1). There was notable variation in this statistic over the course of the sample, with weekdays
showing higher rates (86.65% to 89.31%) and weekends showing lower rates (82.03% to
83.32%). Inspection of the datarevealed that this effect was due to the weekend users being less
likely to be cookie compliant than their weekday counterparts. There were very few instances of
users switching hosts (Case 2A), and 0.05% of the cases in which the host and user agents
changed though the cookie remained the same. While technically this should indicate an error
condition, inspection of the log file showed cases in which a user’s requests were being issued
through two separate proxies, each running separate proxy software, and hence appending

different user agent information to the request.

[Insert Table 3 around here]

Slightly over 8% of the all requests did not send any cookie information. This number increased
to 11% over the weekend. One percent of users were new to the site from the same host (Case
5A and Case 5C) and just over a percent appear to use some form of cookie obfuscation tool
(Case 5B). Roughly one percent of all requested files was from new users from new hosts (Case
6). As one would expect when host-munging is used, all cases where different hosts are criteria
showed adecrease. The number of timeouts that occurred was 0.08% or just 3,682 out of the 4.7

million number of files requested.

Aswith the IP methods, when only Web pages are considered, the influence of each individual’s

cookie policy increased. The number of requests being issued from cookie compliant users
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(Cases 1, 2A, and 2B) decreased nearly twenty percentage points from 87.84% to 68.37% further
revealing the notable difference between hits and page view methods. The percentage of new
cookies being issued is higher, with Case 5B and Case 6 posting the most gains. For Case 5B,
notable spikes were observed on the weekends, suggesting the weekend users are more likely to
use cookie obfuscation technologies than weekday users. For Case 6, the percentage of new

users from different hosts remained stable across weekend/weekday transitions.

Aswith the hit analysis, the number of cases for page views did not change dramatically for
host-munging or session timeouts. The exception was that the number of new cookies from new
hosts (Case 6) was lower for host-munging, with those cases being picked up by new cookies
from a known host (Case 5C). When all techniques are used—cookies, munging, and

timeouts—the same host-munging driven effect occurs.

2.6 Session Length and Number of Clicks Per Session

In the above analyses, we measured the occurrence rate for users within a site for each method,
providing a basis to understand how the construction of individual paths would be affected by
each method. In this section, we examine the total time a user spends within a Web site, or
"session” and the total number of clicks per session for each method (see Table 4). Itis
important to note that both session time and number of clicks are right skewed distributions, and
as such, the average case as reported by the mean is not the typical case encountered by most
users. In order to measure the effect of each method, the following five groups were created and
pair-wise Welch two-sample t-tests were performed to compare the statistical similarity of the

resulting session time and number of click distributions for each method:

e IP, Munging-IP, and Timeout-IP
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* Page-IP, Page-Munging-1P, Page-Timeout-IP, Page-and Munging-Timeout-I1P

e Cookie, Host-Cookie, and Timeout-Cookie

» Page-Cookie, Page-Munging-Cookie, Page-Timeout-Cookie, and Page-Munging-Timeout-

Cookie

Page-I P, Page-Munging-Timeout-1P, and Page-Munging-Timeout-Cookie

Except for the Page-Cookie and Page-Munging-Cookie clicks per session comparison, all
distributions had unequal variances. The only cases that did not result in statistically significant
different means were: a) the Page-Timeout-Cookie and Page-Munging-Timeout-Cookie clicks

per session, and b) Page-1P and Page-Munging-Timeout-1P clicks per session.

Although the occurrence rate for the various IP methods using all requests was small, the impact
of the various heuristics with respect to session times and the number of clicks per sessionis
large. When host-munging is used, the median session time jumps from 4.15 minutes to 6.8
minutes. The increase can be attributed to more requests being incorrectly treated asa single
user. When timeouts are used, again with the 25 minute default, more distinct users are detected,
and the median session time decreases to 3.03 minutes per user. The number of clicks per
session suffers the same effect of misidentifying users. When the pure IP-per-user metricis
used, the median number of clicksis 38, but increases to 48 clicks for host-munging, and

decreases to 30 clicks when timeouts are cal cul ated.

The effect of falsely identifying users continues with page views, where the median session time
is5.95 minutes using just the I P of the requesting machine. Theincrease from page views can be
attributed to the lack of images to inject noise into the inter-arrival time of requests. Asone

might expect, when the IP page view method is combined with host-munging and session
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timeouts, the typical session time drops to 5.08 minutes, which is longer than the timeout method
(4.15 minutes), but shorter than the host-munging method (10.48 minutes). Theimpact of the
various strategies is even more pronounced for the number of clicks per user, where the page
view |P method users typically request 6 pages per session versus the 5 pages per session for
host-munging, 1 page per session for timeouts, and 4 pages per session for the combination of all
the methods. Even at the | P counting level, the impact of the various strategies is quite dramatic
and can vastly sway the basic characterizations of session time and the number of clicks per

session.

[Insert Table 4 around here]

When cookies are used to measure the total number of files requested, the session time drops to
2.7 minutes, with userstypically requesting 22 total itemsfrom the Web site. Although host-
munging increase the number of clicks dightly, the variance remains stable with respect to the
other methods. This suggests that the users are being identified more reliably and not lumping

all requests from within an organization into one user.

In what appears to be the most stable group of methods, the results of the page view analysis
using cookies are quite smilar. While the typical path for the Page-Cookie, Page-Host-Cookie,
and Page-Timeout Cookie methods all yield the same 3 clicks per session, the means are
statistically different, with the reading time showing more variance (4.48 minutes versus 4.92
minutes versus 3.85 minutes respectively). Thisincrease in variance can play apivota rolein
simulating Web traffic, where accurately modeling the heavy tail propertiesis very important.
As noted previously, there was not a significant difference between the Page-Timeout-Cookie
and the Page-Host- Timeout-Cookie methods with respect to the number of clicks per session,

though the reading times were noticeably different (3.85 minutes versus 4.06 minutes
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respectively). Thisfinding underlies one of the weaknesses of comparing the metrics of clicks
and total visit time: these metrics do not speak directly to the correctness of the paths generated

by each method.

2.7 Levenshtein Distance

We use the Levenshtein (or edit) Distance [L evenshtein 1966] to measure the similarity between
the paths identified by the most promising path reconstruction methods. LD provides a quick
method for judging the closeness of two arbitrary length strings based upon the number of
insertions, deletions, and changes/reversals that are necessary to convert one string to another.

For astring s, let (i) stand for itsi™ character. For two characters a and b, define
r(a,b) = 0if a ==Db; otherwiser (a,b) = change

where change is a language-specific weighting parameter, typically set to one. Assume we are
given two strings s and t of length n and m, respectively. We are going to fill an (n+1) by (n+1)
array d with integers such that the low right corner element d(n+1, m+1) will furnish the required
values of the Levenshtein Distance L(s;t). The definition of entries of d isrecursive. First set

d(i,0)=i, i=0,1,...,n, and d(0,j)=j, j=0,1,...,m. For other pairsi,j use
d(i, j) =min(d(i -1, j) + deletion,d(i, j —1) + addition,d(i =1, j —=1) + r (s(s),t(})))

Typically change, deletion and addition are set to oneto place equal importance upon insertions,

deletions, and changes. We used one as the value for these weightings in our investigations.

One of the nice propertiesisthat the numeric similarity produced by LD defines a metric space.

A space X ismetric if there isdefined areal non-negative function of two variables d(A,B). The
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function is known as the distance between the two points. It is characterized by the following

properties. For A X,BO X, CO X

1. d(A,B)=0if and only if A==B. (the distance is 0 if and only if the points coincide)

2. d(A,B)=d(B,A) (the distance from A to B is the same as the distance from B to A)

3. d(A,B)+d(B,C)>=d(A,C) (the sum of two sides of atriangleis never less than the third

side)

In order to test the similarity of the paths generated by each method, the following comparisons
were made (see Table 5). "Standard” refers to counting methods that are typically employed by
various logfile analysis programs and "Modified" refers to the paths generated by the most
promising methods in this study. The LD was computed for each path generated by the standard
method against all the paths generated by the modified method for the same host with
replacement. One should note that thisis very forgiving method of comparison asit increases
the likelihood that a standard path will match a modified path. A more conservative approach
would match without replacement, i.e., once a standard path matches a modified path, the

modified path is removed from further comparisons for that host.

[Insert Table 5 around here]

The comparison between treating each host-munged | P with 25 minute session timeouts against
using cookie with host-munging and the same session timeouts resulted in an average of 1.54
insertions, deletions, or changes per every paths considered. Incorrectly guessing a portion of
the path was the most common form of modification and occurred in amost half of those cases
(0.87). The average L evenshtein Distance per page calculation determines the likelihood that for

each page in a path an edit of some sort will occur. It isnot surprising given that most paths are
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short (median of 2 clicks), thereisaonein four chance that using IP counting will result in an

incorrect modification to a user’s path.

When cookies are compared to the modified version that uses host-munging and session
timeouts, the number of edits decreases significantly. Aswith the previous comparison,
reversals occur with a higher frequency than additions or deletions, though we were unable to
determine the exact reason. The average number of edits per page using the standard cookie-per-
user algorithm was only 0.0319 edits/page, though for each path, this number increased to 0.29
edits per path. While the number of edits per path certainly decreases when the standard cookie
algorithm is employed, the numberof incorrect paths generated is still concerning, indicating that

simple cookie-based path reconstruction is not as straight-forward as one might initially think.

In the above sections, we presented empirical evidence that suggests the methods used to identify
users and reconstruct paths have significant impact on basic characterizations of users surfing
behaviors as well as the reconstructed surfing paths. While the numbers presented for the
Xerox.com Web site are by no means meant to be absolute with respect to other sites, it does
provide an initial glimpse into the various cases associated with the dynamics of cookie and 1P-
based reconstruction methods. Having established the impact of various path reconstruction
algorithms, we now turn our attention towards the assumptions being made about modeling

surfing behaviors.

3. Didtribution of Usersover Linksfrom a Page

Imagine the users who visit a page on the WWW who then decide to surf to other pages linked to
that page. They process the content of the visited page and, based on some decision, click on a
hyperlink that takes them to another page. On the one hand, it may be plausible to assume that

every link emanating from that page would get chosen an equal number of times over the course
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of visits from many users. After al, although users may have different interests, their interests
may be uniformly distributed over links when we aggregate over very large numbers of users.
On the other hand, the population of usersthat vist a WWW page may have some systematic
biasin their pattern of interest. Some links from a page may be generally more relevant than
others, for that particular population of visitors. A similar bias result from systematic biases
imposed by the structure of the interface to WWW content. For instance, it seems plausible to
assume that users process displayed WWW pages in arelatively common and systematic manner
(e.g., top-down and left-to-right). Such systematic interaction patterns might introduce biasesin
the patterns of observed link-following behavior. For instance, links encountered earlier in
reading a page might have a higher likelihood of being selected than later ones, even when they

are of equal relevance to the user.

Existing models make different assumptions about how users distribute themselves over links
from apage. Theagorithms used in Google [Brin and Page 1998] and Clever [Kleinberg 1998]
assume that the links emanating from a page are equally weighted with respect to user interests,
document relevance, or likelihood of being pursued. Spreading activation models [Pirolli et al.
1996; Huberman et al. 1998] alow for systematic biases. We now turn to an investigation of

these assumptions.

[Insert Figure 2 around here]

3.1 Goodness-of-fit of Uniform Distribution Model

Figure 2 presents a series of histograms of the observed proportions of users who choose links
emanating from pages. We only include datafor surfers who move from one page to the next

(rather than leave the web site). Each histogram displays a set of Web pages classified by their
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number of outlinks (links emanating from apage). All Web pages with two outlinks are
characterized by one histogram, all with three outlinks another histogram, and so on up to pages
with 16 outlinks as the number of pages within the Xerox site with more than 16 links was
nominal. We haveignored pages with just one outlink since all continuing surfers will follow
that link. Pages with greater than 16 outlinks are ignored. On each histogram, we have aso
marked, using avertical line from top to bottom of each chart, the expected proportion of users
who should follow linksif they chose links with uniform weighting. For instance, for pages with
two links, 0.5 of the users should choose each link, and in general, the expected proportion of

users choosing links will be 1/(number of links).

In Figure 2, it seems that the modes of the observed distributions are close to the values expected

by assuming a uniform distribution. However, the observed distributions also appear to be

skewed, with afew large observed proportions and many small observed proportions. We

computed x? tests to determine the goodness-of-fit of the uniform distribution assumption. For

each page i, we let n; be the number of users observed to continue on to linked pages (for our

data set), L; the number of links emanating from i, and p; = 1/L; be the expected proportion of
userswho will choose each of thel = 1, 2, ..L; links. We let the expected frequency of users

who travel any given link be,
EiI = ni pl (1)

and the corresponding observed frequencies of users traveling the same links, obtained from our

data, ar€);; .

Table 6 summarizes oyf tests. Pages were categorized according to the number of links

emanating from them, as indicated in Table 6. From exploration of the expected frequency

distributions, we chose to partition the observed and expected distributioks=idi@,... 7 bins
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(to avoid bins with zero expected frequencies), and pooled the expected E;; and observed O,
into those binsto give us aggregate Ex and Ok for each k = 1, 2, ...7 bins. For each category of

pages, we calculated the goodness-gfffistatistics in Table 1 usirf, andO.

All of the values ofx? are significant ap < .001, indicating a poor fit of the uniform distribution

to the observed distribution of users over links. Moreoverythealues generally become

larger with increasing number of links from a page, indicating greater deviations from the

uniform distribution. Models that capture the non-uniform distribution of users surfing to linked
pages should provide better fits to observations. Of course, the increased accuracy comes at the

cost of more free parameters to be estimated from data.

4. Information Contained in Surfing Paths

Our analysis of how surfers distribute themselves over outlinks considered the probability of
transitioning down a link given only knowledge of the page currently visited. Longer sequences
of surfers' previous page visits might provide more information about their next transition down

a hyperlink. In this case, users can be thought of as building context for future page requests, or
as part of some goal-directed behavior. For instance, if we saw that a surfer had visited a
sequence of pages dealing with cars rather than a sequence dealing with books, we might predict

that their future transitions are likely to deal with cars too.

We can think of these surfing pathsnegrams. Suchn-grams can be represented tuples of the
form <X3, Xz, ... X;> to indicate sequences of page clicks by a population of users visiting a web
site. Each of the components take on specific vafues for a specific surfing path taken by a

specific user on a specific visit to the web site. Our last analysis of the distribution of users over
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outlinks considered n-grams of the form <X;, X> where X; was the current page visited by a

surfer and X, was the page surfed to by transitioning down an outlink.

Users often surf over more than one page at aweb site. We may record surfing n-grams, <X, Xz,

... X;> of any length observable in practice. Assume we define thgsamns as corresponding

to individual surfing sessions by individual users. That is, each surfing session is comprised of a

sequence of visits made by a surfer, with no significantly long pauses. Over the course of a data

collection period—say a day—one finds that the lengthsf surfing paths will be distributed as

an inverse Gaussian function , as in Figure 3. This appears to be a universal law that is predicted
from general assumptions about the foraging decisions made by individual surfers [Huleerman,

al. 1998]. From Figure 3 it is apparent that the bulk of recondg@dms will be very short,

although there will be a few very long surfinggrams.

[Insert Figure 3 around here]

4.1 Entropy Analysis. k™ Order Markov Approximations

In our analysis of surfers distributing themselves over outlinks, we were concerneegnatns
of the form <X;, X,> and, more specifically, with the probability of transitioning<taiven that

the surfer was visiting(;. That is, we were interested in the conditional probabilities,

P(X; [%) = PrX;, =x, | X, =x,). 2

We can generalize this to a concern with the conditional probability that a surfer transitions to an

n" page given their previods= n-1 page visits:

PO [ Xy X)) = PrOX = X0 1 X gy Xoi) )
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Such conditional probabilities are known as K"-order Markov approximations (or K"-order

Markov models). The zero™ order Markov model is just the unconditional base rate probability:

p(x,) = Pr(X,), (4)

or, in our case, the ssimple probability of a page visit. This might be estimated as the proportion

of times apageisvisited over the course of some time period.

Xn isthought of as arandom variable whose values, X, = X,, indicate which page will be visited

by asurfer. For agiven K™-order Markov model we may ask how much uncertainty thereis

about the values of X, and investigate how this uncertainty changes as we increase k, the length

of the previous sequence of visits used to predict X, in aconditiona probability. This can be

accomplished by analyzing the entropy or conditional entropy of the models.

The entropy H(X) of asingle random variable, X, is the expected (average) uncertainty of the

random variable:

H(X) = Egogz—1D

p(X)0
_ 1
= ;X P09 log,
== p(x)log, p(x)

xOX

(%)

which ismeasured in bits. One way to think of entropy isthat it provides an indication of the
minimal coding that would be required to represent the state of X,,. Higher bit values indicate
higher uncertainty about the state of X, and the fact that it would require more coding to
represent the state of X,. For instance, the values taken on by throws of two dice have higher
entropy than the values taken on by throws of one die. 1t would take a code of more bits to

minimally distinguish the states of two dice than the states of one die.
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For our analysis of k™-order Markov models of surfing n-grams, we will also need to compute
conditional entropy H(X, | X,_;,....,X,..) . Inour case, thiscan be interpreted as the amount of
uncertainty about X, that remains after we know that a surfer has visited k previous pages. The

conditional entropy can be calculated by

HOG I Xz X0 = ) POOHOG T X = Xy gy X = %), (6)
% X,

and by using the chain rule for entropy
H(Xp,n X)) = H(X) +HOXG X)) + A+ H(X X X ) (7)
which involves the joint entropy of variables,

HXY)=-F Y p(x.y)log, px.y), ®)

xXyLlY
where p(x,y) = Pr(X=x, Y=Yy) isthejoint probability of the random variables X and Y.

If we model surfing paths by K" order Markov models, then we can use these entropy and
conditional entropy measurements. To measure the amount of uncertainty that remainsin

predicting X, if we know surfers k previous page visits then:

zeroth order:  H(X,) (based on the probability that page is visited regardless of path),
firstorder: H(X, | X _,),
second order: H(X, | X, ., X ),

K" order:  H(X, | X, 100 X ,) -
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Table 7 presents results of an entropy and conditional entropy analysis of the Xerox.com datafor
May 10, 1998 through May 19, 1998. In Table 7 we have stratified the data according to the
length of the n-gram obtained from individual surfers visits. For each length of n-gram, we then
calculated the entropy and conditional-entropy for models of order zero up to length n. That is,

we considered all models of order & * n-1 for each class of surfinggram of lengtm =
2,...,10 surfing transitions. Note, however, that the size of the reduction (in terms of bits)
diminishes: The largest reduction in entropy is obtained by moving from %-aeter model to
a first-order model, less reduction is obtained by moving from a first-order to second-order

model, and so on.

[Insert Table 7 around here]

As with the analysis of surfing distributions over outlinks, we find the ubiquitous trade-off in
model complexity with model accuracy. If we model longer paths we can reduce uncertainty in
predicting future visits, but the models become more complex and will require greater computing
to estimate and greater storage to represent. The entropy measurement provided us with a
characterization of the complexity of the model and its match to the data. By examining how this
changes with the length of the path modeled, we may make practical decisions about the
complexity of model to use, given constraints of data collection, storage costs, and computing

power.

4.2 Sability of Surfing Distributions Over Time

In the analysis of" order Markov models of surfing paths, we computed the relevant estimators
for our probabilities directly from the data (these waesimum likelihood estimators) for a

particular day at a particular web site. To use these models and estimators to predict activity on
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future days on the web site requires assumptions that the stochastic processes generating the
surfing paths are stationary and ergodic. Stationary stochastic processes are ones that do not

change over time. Ergodic processes are ones in which states recur eventually.

It israther unlikely that surfing patterns and the WWW fulfill these assumptions. Web sites
change and the population of visitors and their interests probably change too. We can build upon
the previous kind of analysis to investigate how much change occurs over days. The basic
approach is to collect surfing path n-grams from one time period, estimate k™ order Markov
models of the probabilities that surfers transition to page n given their k previous page visits, and

then see how well the estimated probability distributions match those for future time periods.

There are anumber of ways to compute the similarity (or more commonly, the dissimilarity) of
two probability distributions.  One common approach is the Kullback-Leibler formulafor
relative entropy, which characterizes the mutual information in two probability (mass)
distributions. The Kullback-Leibler divergence (dissimilarity) of two distributions, pand q, is

D(plla) where,

D(plla)=Y log%. (©)

Comparing Equation 9 to Equation 5, one should recognize that thisis another entropy measure.

Unfortunately, application of thisformulais problematic when there are zero probabilities for

one of thedistributions (i.e., ). This occurs often with our surfing data—for instance, pages that
are visited on one day may not be visited the next. Instead of the Kullback-Leibler measure, we
have usedotal divergence to the average (TDA). The divergence (dissimilarity) of two

distributions is:
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TDA(p.q) = TDA(Q, p)

_~0)p+ao, ~Ollp+a0 (10)
_DEF( 2 D+DDC{ 2 O

This overcomes the problems of zero probabilities and, unlike Kullback-L ebler divergence, it is

symmetric. TDA rangesfrom zero to 2 log 2 for maximally different distributions.

We conducted TDA analyses on the set of data collected from Xerox.com for the dates 5/10/98
through 5/19/98. We designated the data sets as Day 1 (5/10/98) through Day 10 (5/19/98). We
then estimated the k™-order Markov models on data from one day (the training set) and measured
its TDA against K"-order Markov models estimated from another day (the test set). We did this
at severa levels of days of delay between the training set and test set: Delay = 1, 2, 5, or 10 days
of delay (thisis an approximately logarithmic sequence of delays). We did thisin two ways. (@)
by using Day 1 asthetraining set and various days (Days 2, 3, 6, and 10) asthetest sets, and (b)
by using Day 10 asthe test set and various days (Day 9, 8, 5, and 1) as the training set (note that

the Day 1 to Day 10 comparison is redundant).

Again, we stratified the data by surfing n-grams ranging from n = 2 to 10, and we examined k™
order Markov modelsfor k =1t0 9. Figure4 presentsthe TDAs for each of the training-test
comparisons. Figure 5 presents the K"-order Markov models over days of delay between training
and test. In Figure 5, for the sake of clarity, we only present the data for the longest k™-order
models estimated for each class of n-gram—that is, fon-grams of lengtim we present thk = n-

1 order model.

From Figure 4 and Figure 5 it is apparent that the first-order Markov models show the least
divergence between training and test. Overall, the divergence between training and test for
appears to increase in the same way for all orders of model at all levels of delay with both

variable training sets and variable test sets.
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The TDAs for the 7" order, 8" order, and 9" order Markov models appear anomalousin
comparison to the lower order models. It appears that the dissimilarity across daysin these
higher-order models is much greater than expected if we just extrapolated from the lower order

models.

[Insert Figure 4 around here]

Interestingly, if we ignore the anomalous data, Figure 4 suggests that on the longer n-grams, the

worst divergences between training and test occur at the midranges of k. Recall that we are

estimating the probability of avisit to page n given knowledge of the immediately prior k page

visits of surfers, of p(xn[Xn-1,..-Xn-k ) . Figure 4 suggests that on longegrams, knowledge of

longer lengths of prior visits (lard@ or shorter lengths of prior visits (sm&Jlshows less

divergence over training to test than middle-sized lengths of prior visits (intermi@didteis

might indicate that knowledge of the starting visits of surfers and knowledge of the visits made
immediately prior to a transition are most stable and important to making accurate estimates of a

visit to pagen, for longer lengtm-grams.

[Insert Figure 5 around here]

4.3 Predicting Future Visits Using K™-order Markov Models of Past Surfing Paths

To provide a more concrete examination of these Markov models of surfing paths we consider a
simple prediction scenario. Imagine that we estimate $6hoeder Markov models of surfing
transitions from training data and we want to use these to predict visits of surfers in the future.
Suppose we have just observed a surfer rkgdagge visits. In order to make a prediction of the

next page visit we want to have an estimatp(®X.-1,...X« ) from our training data. This will
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require, however, that this particular path of k visits <x.1,...Xn«> was observed in the training

data. Let us call this sequence.5... x> apenultimate path. Let us call the match of a
penultimate path on a test day to the same penultimate path in trainingodatiétianate path

match (PPM). Continuing our scenario, if we have a penultimate path match, we examine all
the conditional probabilitieg(x|%.1,...X.k ) available for all pages,, and predict that the
particular page having the highest conditional probability of occurring next will in fact be visited
next. If we then observe that the surfer makes the predicted visit, then we say wéaihéa® a

opposed to aiss).

From training data we estimatp(|Xn-1, ... Xk ) from all availablen-grams of lengths =

1,...10. Against separate test data we estimated the following probabilities of interest:

* Pr(PPM) the probability that a penultimate patk, .. x>, observed in the test data was

matched by the same penultimate path in the training data,

* Pr(Hit|PPM) the probability that paggis visited, given thatx,.i,...Xn«>, is the penultimate

path and the highest probability conditional on that papi$x.-1, ... X« ),

* Pr(Hit) = Pr(Hit|PPM)+Pr(PPM), the probability that the page visited in the test set is the one
estimated from the training as the most likely to occur (in accordance with the method in our

scenario).

Figure 6 presents Pr(PPM), Pr(Hit|PPM), and Pr(Hit) for various training-test delays. As in our
TDA analysis, we used Day 1 as a fixed training set and then tested our estimates at various
delays (1, 2, 5, or 9 days), and we used Day 10 as a fixed test set and used various training sets to
provide the same delays. All three probabilities drop as one increases the delay between the
training set and test set, although the size of these reductions is not great. The size of the

reductions generally diminishes with increasing delay. As indicated by the Pr(PPM), as one
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increases the length of the penultimate path (or equivalently, the order of the model), thereisa
marked decrease in the probability of finding a matching path in the training and test data sets.

Thisisthe mgor determinant in the superior Pr(Hit) estimates for lower-order models.

Figure 7 shows the improvements in prediction between training and test as a function of
increasing the size of the training data set. Notice that the first order model does not improve as
much asthe 2", 39, 4™ 5" 6" or 7" order models. Thisis because the probability of finding a
penultimate path match, Pr(PPM), between training and test datais practically at ceiling for the
first-order model with only one day of training data. As shown in Figure 8, the gainsin
predicting hitsin Figure 7 are largely attributable to gainsin finding matching surfing paths

across the training and test data.

[Insert Figure 6 around here]

[Insert Figure 7 around here]

[Insert Figure 8 around here]

5. Conclusions

In this paper, we presented a number of studies that investigate various aspects of WWW user
surfing paths. Several path reconstruction algorithms were demonstrated to have significant
impact on basic characterizations like session times and the number of clicks per session.
Levenshtein Distance was used to further understand the differences between the various

approaches. While the purpose of these investigations was not to motivate a particular algorithm
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over another, our findings do reveal that careful choice must be taken when reconstructing user

paths through WWW sites.

Researchers are beginning to develop models aimed at predicting the interests of surfers.
Sometimes these models are based just on the hyperlink structure of the WWW [Brin and Page
1998] and sometimes they are based on statistics drawn from usage patterns [Huberman et al.
1998; Padmanabhan and Mogul 1996]. The assumptions for these models seem to be that surfers
will follow WWW structure in similar ways, or that surfers will exhibit the same paths as earlier
surfers. We presented a preliminary investigation of such assumptions by using a Markov model
representation. Such models are well understood, but have strong (usually testable) assumptions.

They provide agood initial basis for exploring the stochastic processes of surfing.

In the context of these models and their assumptions, we used entropy and conditional entropy as
away of measuring the uncertainty in predicting surfer visits, and the reduction in uncertainty
obtained by making our making predictions conditional on longer surfing paths. Measurements
of divergence (TDA) provide away of investigating the stability of surfing path distributions
over time. A set of analyses and methods was also presented that began to uncover the impact of

various path generation techniques on the overall integrity of paths collected.

Our information-theoretic measurements (entropy and TDA) suggest that information is gained
by using longer paths to estimate the conditional probability of link choice given surf path. The
improvements diminish, however, as one increases the length of path beyond one. Information-
theoretic measurements suggest that the conditional probabilities of link choice given surf path

are more stable over time for shorter paths than longer paths. Direct examination of the accuracy
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of the conditional probability modelsin predicting test data al so suggested that shorter paths

yield more stable models and can be estimated reliably with less data than longer paths.

It isimportant to note that we have used Markov models as aframework for stating empirical
characterizations. We are not necessarily advocating their appropriateness as descriptive models
of surfing behavior. Like human language, surfing activity may have a deeper structure
("grammar") or intentiona ("meaning" or "purpose”) that can be derived from the simple
statistics of surface behavior. We can still, however, use measurements like entropy to

characterize the fit and complexity of these deeper models, if and when they are devel oped.
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Figure Captions
Figure 1. Model of WWW traversals. A conceptual model of surferstraversing a web site.

Figure 2. Estimated surfer transition probabilities. Histograms of estimated surfer transition
probabilities for links emanating from pages at the Xerox.com web site over the May 10,1998
through May 19, 1998 period. Pages are categorized by the number of outlinks. The vertical

linesindicate the transition probabilities expected by auniform distribution model.

Figure 3. The Law of Surfing. The Cumulative Distribution Function of AOL users as afunction
of the number of clicks surfing (Huberman, Pirolli et al. 1998). The observed data were
collected on December 5, 1997 from a representative sample of 23,692 AOL users who made

3,247,054 clicks. Thefitted inverse Gaussian distribution has amean of p =2.98 and A = 6.24.

Figure4. TDA Analysis. TDA analysis of divergence of training and test estimates of
Markov approximationsto surfing paths observed at the Xer ox.com web site 5/10/98

through 5/19/98. Seetext for details.

Figure5. TDA analysisof divergencein distribution of surfing path probabilities over

varying delays between training and test estimates. Seetext for details.

Figure 6. Analysis effects of delay between training and test data setsfor a prediction

scenario using k™ order Markov models. Seetext for details.

Figure 7. Effects of increasing the number of days of training on predicting visits based on

surfing paths. Seetext for details

Figure 8. Effects of increasing the number of days of training on the probability of finding

matching surfing paths. Seetext for details.
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Table 1. Effects of various | P based counting methods as applied to all the requests and only

page requests received by the Xerox web site from May 10, 1998 through May 19, 1998. The

data shows the occurrence rate in the form of percentages for each case (same hogt, different

host, and session timeout).

Method Same Host New Host Session Timeout
All File Results
IP 98.27% 1.73% —
Host-Munging-I1P 99.07% 0.93% —
IP-Timeout 97.80% 1.72% 0.47%
Page Results
IP 89.62% 10.38% —
Host-Munging-IP 94.37% 5.63% —
Timeout-IP 88.45% 5.51% 6.04%
Host-Munging-Timeout-I1P 91.25% 5.45% 3.30%
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Table 2. The set of possible scenarios for determining users when a site is capable of issuing

cookies and recording the user agent field.

Case Cookie Host Agent Conclusion
1 Same Cookie Same Host Not significant Same User
2A Same Cookie Different Host Same Agent Same User
2B Same Cookie Different Host Different Error
Agent
No Cookie Same Host Not significant  Uncertain
No Cookie Different Host Not significant  Different User
5A New Cookie prior Same Host Same Agent New user
cookie value"-" from previoudly issued
host first cookie
5B New Cookie prior Same Host Same Agent Uncertain
cookie value from host
not "-"
5C New Cookie, prior Same Host Agent changes Different User
cookie value from host
not "-"

6 New Cookie Different Host Not significant  Different user




Table 3. Effects of various cookie based counting methods as applied to all the requests and only
page requests received by the Xerox web site from May 10, 1998 through May 19, 1998. The

data shows the occurrence rate in the form of percentages for each of the ten possible cases.

Method 1 2A 2B 3 4 5A 5B 5C 6 7
(Number expressthe percentage of all requests)

All Files Results

Cookie 86.56 1.23 0.05 7.99 0.56 0.45 1.29 0.52 1.37 —
Host-Munging-Cookie 87.67 0.14 0.02 8.23 0.32 0.44 1.26 1.15 0.78 —
Timeout-Cookie 86.49 1.23 0.05 7.98 0.55 0.45 1.29 0.51 1.37 0.08
Page-Cookie 66.88 1.45 0.04 6.17 2.96 1.89 8.72 3.21 8.68 —

Page Results

Host-Munging-Cookie 68.15 0.20 0.01 7.39 1.75 1.89 8.54 7.11 496 —
Timeout-Cookie 66.69 1.44 0.04 6.15 2.95 1.88 8.69 3.20 8.65 0.29

Host-Munging-Timeout67.72 0.20 0.01 7.34 1.74 1.88 8.48 7.07 4.93 0.64
Cookie
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Table 4. The number of clicks per session and the total time per session for all methods using the

Xerox web site May 1998 data.

Method Median Mean  St.Dev Median Mean Stan. Dev
Clicks Session Time
All Files Results
IP 38 59.68 289.57 249 4074  12635.22
Host-Munging-1IP 48 106.10  782.20 412 8580 18098.17
IP-Timeout 30 46.74 251.78 182 604.6  3229.59
Cookie 22 33.89 68.86 162 1684  6744.78
Host-Munging-Cookie 23 34.89 70.18 178 2084 7541.36
Timeout-Cookie 21 31.35 65.20 137 706.5  3862.45
Page Results
IP 5 9.79 78.75 357 4358  12678.60
Host-Munging-1P 6 17.31 199.63 629 9491  18624.43
Timeout-1P 1 1.01 0.88 249 356.4  2460.345
Host-Munging-Timeout-1P 4 10.94 156.75 305 932.6  3903.87
Cookie 3 5.812 13.45 269 1899  6708.37
Host-Munging-Cookie 3 5.96 1351 295 2368 7647.17
Timeout-Cookie 3 541 12.66 231 898.2 4311.14
Host-Munging-Timeout- 3 5.46 12.56 244 1016  4397.26

Cookie
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Table 5. Levenshtein Distance comparisons of the most commonly used methods (Standard)
against the most promising methods identified in this study (Modified). Only page views were

used for the comparisons.

Standard Modified Mean Max StanDev Sum

Host-Timeout-1P Host-Timeout-Cookie

Changes per Path 0.8721 190 6.09 26415
Deletions per Path 0.0092 22 0.23 646
Insertions per Path 0.6479 170 541 45290
LD Editsper Path 1.5370 190 8.61 107414

Average LD per Page 0.2587 181 2.86 18085

Cookie Host-Timeout-Cookie

Changes per Path 0.1691 92 1.40 6993
Deletions per Path 0.0068 11 0.13 283
Insertions per Path 0.1131 81 1.25 4676
LD Editsper Path 0.2891 94 1.96 11952

Average LD per Page 0.0319 11 0.16 1321




Table 6. Goodness-of-fit tests of amodel of surfers transitioning page outlinks with uniform

probability. Note: p < .001 at values greater than x? (6) = 22.46.

No. Links, L. X (df = 6)
0<L<3 25.21
3<Li<6 26.44
6<Li<9 172.99

9<Li<12 59.70

12 < L 3666.30




Table 7. Entropy and conditional entropy estimates (in bits) for k" order Markov models of the

Xerox.com datafrom May 10, 1998 through May 19, 1998.

kth Order Model
L engt h Oth 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
n-gram
2 789 325
801 328 240
814 329 233 162
818 329 224 146 0.79
820 328 216 133 064 0.37
821 328 210 124 055 029 0.14
820 327 204 116 048 024 011 007
820 327 201 111 044 022 009 005 0.03
10 819 325 19 104 040 019 0.08 004 002 0.02
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