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Abstract

Surfing the World Wide Web (WWW) involves traversing hyperlink connections among

documents.  The ability to predict surfing patterns could solve many problems facing producers

and consumers of WWW content.  We analyzed WWW server logs for a WWW site, collected

over ten days, to compare different path reconstruction methods and to investigate how past

surfing behavior predicts future surfing choices.   Since log files do not explicitly contain user

paths, various methods have evolved to reconstruct user paths.   Session times, number of clicks

per visit, and Levenshtein Distance analyses were performed to show the impact of various

reconstruction methods.   Different methods for measuring surfing patterns were also compared.

Markov model approximations were used to model the probability of users choosing links

conditional on past surfing paths.  Information-theoretic (entropy) measurements suggest that

information is gained by using longer paths to estimate the conditional probability of link choice

given surf path.  The improvements diminish, however, as one increases the length of path

beyond one.  Information-theoretic (Total Divergence to the Average entropy) measurements

suggest that the conditional probabilities of link choice given surf path are more stable over time

for shorter paths than longer paths.  Direct examination of the accuracy of the conditional

probability models in predicting test data also suggests that shorter paths yield more stable

models and can be estimated reliably with less data than longer paths.
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1. Introduction

Surfing the World Wide Web (WWW) involves traversing the connections among hyperlinked

documents.  It is one of the most common ways of accessing WWW content. Theories and

models are beginning to explain how observed patterns of surfing behavior emerge from

fundamental human information foraging processes [Huberman et al. 1998; Pirolli and Card

in press].  The ability to predict surfing patterns could be instrumental in solving many problems

facing producers and consumers of WWW content.  For instance, web site designs could be

evaluated and optimized by predicting how users will surf through their structures.  WWW client

and server applications could reduce user perceived network latency by pre-fetching content

predicted to be on the surfing path of individual users or groups of like-minded users.  Systems

and user interfaces could be enhanced by the ability to recommend content of interest to users, or

by displaying information in a way that best matches users’ interests.  Here, we present several

analyses investigating how prior surfing behavior predicts future surfing choices.

[Insert Figure 1 around here]

 presents a conceptual model of the surfing process used in spreading activation models of the

diffusion of surfers through a web site [Pirolli et al. 1996; Huberman et al. 1998].  Other models

[Brin and Page 1998; Kleinberg 1998; Cunha and Joccoud 1997; Padmanabhan and Mogul 1996]

can be shown to be variants of this conceptual model.   illustrates the elements of the spreading

activation model: (a) users begin surfing a web site starting from different entry pages (a), (b) as

they surf the web site, users arrive at specific web site pages having traveled different surfing

paths (b), (c) surfers choose to traverse possible paths leading from pages they are currently

visiting (c), and (d) after surfing through some number of pages, surfers stop or go to another

web site (d).  Elsewhere [Huberman and Adamic 1998], models have been developed to address
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how users choose new sites and which pages they visit first (a).  Models have also been

developed [Huberman et al. 1998] to characterize the distribution of the number of pages visited

by users at web sites (d).  Here we concern ourselves with how past surfing paths (b) may

contain information that predicts future surfing paths (c).

Surfing paths can be conceptualized as traversals of the graph representing the hyperlink

structure of a web site, where nodes represent WWW pages and edges represent hyperlinks

among pages. A simple predictive model might assume that users visiting each page will

randomly choose which links to follow, resulting in a uniform distribution of users traversing

each link from a page. In this model the transition probabilities associated with each link, (e.g.,

p1, p2, p3 in c) are simply one divided by the number of links emanating from a page.  Several

predictive models [Brin and Page 1998; Huberman et al. 1998; Cunha and Joccoud 1997;

Padmanabhan and Mogul 1996] make a Markov-like assumption that the choice of the next page

to surf is dependent only on the last page.  At least a few models [Brin and Page 1998] assume

uniformly weighted transitions down links.  The advantage of these models is that they can be

constructed directly from the web site’s hyperlink graph without collecting usage data, thereby

keeping computational and storage requirements to a minimum.

However, given that it is possible to record the paths of users surfing through a web site, non-

uniform transition probabilities can be estimated for the links emanating from each page (e.g., p1,

p2, and p3 in c).  With this slightly more complicated model, a user visiting a particular page is

predicted to visit linked pages according to the estimated transition probabilities.  This

assumption was made in the spreading activation model presented in Huberman et al.  [1998].

One issue we investigate is the degree to which observed surfing transitions deviate from the

assumption that surfers randomly choose linked pages.
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Another assumption of Markov-like surfing models is that surfing paths leading up to the

currently visited page do not influence transition probabilities. Kantor [1997] challenges this

notion by proposing a system that matches the observed surfing path of a user against the

recorded paths of other users.  Such a system would assume that future sequences of a user’s

surfing behavior would mirror paths observed by prior users. We present analyses that test

whether there is predictive power to be gained by using longer prior surfing paths in prediction.

If predictive surfing models are based on user data to estimate transition probabilities, then we

may also be concerned with the reliability and sensitivity of these estimates.  We will present

analyses concerning the impact of the size and span of the data sets used to construct transition

estimates.  We will also investigate how well estimates constructed over one span of time predict

events at various distances into the future.

Before turning to these analyses, however, we first investigate the basic techniques that provide

data on surfing patterns.  A variety of methods have been used to extract surfing patterns from

WWW logs, ranging from heuristics to the analysis of cookies.   Very little is known about the

quality of these measurement techniques.  While descriptive statistics like the number of visits

per page may not be affected by the choice of path determination algorithms, other statistics like

the total visit time per user and the number of clicks per visit may be affected.  Failure to

accurately reconstruct user paths within Web sites makes accurate modeling of surfing

problematic, if not erroneous.  In the next section, we use several analytical methods to explore

the reliability and impact of various path construction techniques.

2. Measurement of Surfers and Their Paths

In order to examine the assumptions embedded within various models of surfing behaviors, the

paths of users through web sites have to be correctly identified.  Despite nearly all web servers
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being instrumented to record which web pages are requested, the task of gathering reliable usage

information from web sites can be non-trivial, especially for path information [Pitkow 1997].

The presence of intermediary caches and proxies, the lack of client cookie compliance, the use of

obfuscation and anonomizing tools, and visits by robots all increase the difficulty in piecing

together the sequence of user requests from server logs.  Researchers attempting to characterize

and model the Web employ a variety of methods and assumptions to reconstruct the paths of

surfers often times yielding different results.  We hypothesized the some of the difference in

these results may be attributed to different path construction methods.

This portion of the paper will quickly review the data generally recorded in server access logs

and their limitations, followed by a description and comparison of various path construction

methods.  Specifically, we use the Xerox.com Web site to document the incidence rate of various

assumptions, measure the impact of these methods on session times and clicks per session, and

compute the similarity of generated paths using Levenshtein Distances [Levenshtein 1966].

Several limitations of this study are worth mentioning.  First, the purpose of these results is to

demonstrate the impact that various algorithms have on basic characterizations and subsequently,

on the models constructed of Web surfing.  We are not attempting to make generalizations and

recommendations that extend beyond the Web site used in our investigation. Rather, we motivate

the need for careful consideration of the issues around path reconstruction and the techniques

used to analyze paths.   Second, we readily admit that other schemes exist for determining and

analyzing user paths that are not included in our study, some of which may be better than the

methods presented here.  Again, our purpose is to illustrate that quality of path reconstruction

matters, not to propose a specific path reconstruction methodology.

2.1 Recorded Log File Data
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While web servers have the capability to record vast amounts of information, relatively few

fields are typically recorded.  Several formats have evolved from the Common Logfile Format

(CLF), including the Extended Logfile Format (ECLF) as well as a variety of customized

formats.  For the most part, the following fields are recorded by web servers:

• the time of the request in seconds,

• the machine making the request recorded as either the domain name or IP address,

• the name of the requested URL as specified by the client,

• the size of the transferred URL,

• and various HTTP related information like version number, method, and return status.

Various web servers also enable other fields to be recorded, the most common of which are:

• the URL of the previously viewed page (the "referrer" field),

• the identity of the software used to make the request (the "user agent" field),

• and a unique identifier issued by the server to each client (typically a "cookie").

While these fields are useful to analyze and provide reasonable characterizations, several

enhancements would facilitate analysis that is more reliable and accurate as well as facilitate path

reconstruction efforts.  First, the unit of time recorded should encode a finer granularity like

milliseconds or a site definable metric like ticks/second.  This is especially important for heavily

trafficked sites, where hundreds of requests per second can occur.  Second, the URL recorded is

the URL as requested by the user, not the location of the file returned by the server.  This

behavior can cause false tabulation for pages when the requested page contains relative
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hyperlinks, symbolic links, and/or hard coded expansion/translation rules, e.g., directories do not

always translate to "index.html."  It also can lead to two paths being considered different when in

actuality they contain the same content. While both pieces of information are useful, the

canonical file system-based URL returned by the server is arguably more useful as it removes the

ambiguity of what resource was returned to the user.

The content of the information contained in the referrer field can be quite varied.  Various

browsers and proxies do not send this information to the server for privacy and other reasons.  In

addition, the value of the referrer field is undefined for cases in which the user requests a page by

typing in the URL, selects a page from their Favorites/Bookmarks list, or uses other interface

navigational aids like the history list.    Furthermore, several browsers provide interesting values

for the referrer field.  To illustrate, suppose a user selects a listing for the Xerox Corporation on

Yahoo.  In requesting the Xerox splash page, the URL for the page on Yahoo is provided as the

value for the referrer field.  Now suppose the user clicks on the Products page, returns to the

Xerox splash page, and reloads the splash page.  In several popular browsers, the referrer field

for Yahoo is included in the second request for the Xerox splash page although the last page

viewed on the user’s surfing path was the Product page in the Xerox site.  If one chooses to

reconstruct paths by relying upon the referrer field, the paths of two users may be identified

instead of only one.  Given these limitations, strong reliance upon the information in the referrer

field may be more problematic than one would initially expect.

The user agent field also suffers from imprecise semantics, different implementations, and

missing data.  This can partially be attributed to the use of the field by browser vendors to

perform content negotiation.  Given that the rendering of HTML differs from browser to

browser, servers have the ability of altering the HTML based upon which browser is on the other

end. Consequently, the user agent field may contain the name of multiple browsers.  Some



7

proxies also append information to this field. As we shall later show, the value of the user agent

field can vary for requests made by the same user using the same Web browser.  Adding to the

confusion, there is no standardized manner to determine if requests are made by autonomous

agents (e.g., robots), semi-autonomous agents acting on behalf of users (e.g., copying a set of

pages for off-line reading), or humans following hyperlinks in real time.  Clearly, it is important

to be able to identify these classes of requests to construct accurate models of surfing behaviors.

Although cookies were initially implemented to facilitate shopping baskets, a common use of

cookies is to uniquely identify users within a web site.  Cookies work in the following manner.

When a person visits a cookie enabled web site, the server replies with the content and a unique

identifier called a cookie, which the browser stores on the user’s machine.  On subsequent

requests to the same web site, the browser software includes the value of the cookie with each

request.  Because the identifier is unique, all requests that were are with the same cookie are

known to be from the same browser.  Since multiple people may use the same browser, each

cookie may not actually represent a single user, but most web sites are willing to accept this

limitation and treat each cookie as a single user.  Recently, browser vendors have provided users

with controls to select the cookie policy that maps to their privacy preferences.  This enables

users to choose various levels of awareness when visiting a server that issues cookies in addition

to allowing users completely disable their browser from sending cookies.  Consequently, unless a

site requires people to use cookies to receive content, the cookie field may be null, which leaves

the task of identifying user paths to relying upon the other recorded fields.  We shall now explore

various methods of reconstructing user paths.

2.2 Reconstructing User Paths
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Given the limitations of the information recorded in Web access logs, it is not surprising that

sites require users to adhere to cookies or defeat caching to gain more accurate usage

information. Still, numerous sites either do not use cookies or do not require users to accept

cookie to gain access to content.  In these cases, determining unique users and their paths

through a web site is typically done heuristically.  Later, we provide an empirical analysis of the

tradeoffs that exist using different methods of identifying users and their clicks streams.  Clearly,

without the accurate reconstruction of user paths, subsequent analyses and attempts to model

surfing may be seriously flawed.

2.3 Usage Data

All analyses reported in this paper were computed from tens days worth of usage data acquired

from the Xerox.com web site from May 10 through May 19, 1998. The site received between

220,026 and 651,640 requests per day during this period.  Later in this paper, we explore various

alternative methods for tabulating usage statistics.  Over this period, there were 16,051 files on

the xerox.com web site, of which 8,517 pages were HTML. The web site issues cookies to users

only upon entry to the Xerox splash page and records the user agent field for each request.

2.4 IP and Domain Name Counting

The most simplistic assumption to make about users is that each IP address or domain name

represents a unique user as in [Manley et al. 1997; Arlitt and Williamson 1996]. Using this

method, all the requests made by the same host are treated as through from a single user.  When

a new host is detected, a new user profile is created and the corresponding requests are

associated to the new user.  We call this heuristic "IP”.
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Several methods that use additional information recorded in the access logs or other heuristics

are also possible.  One refinement is to use the user agent field.  Using this method, new users

are identified as above as well as when requests coming from the same machine have different

user agents.  We call this method "IP-Agent." Another refinement is to place session timeouts on

requests made from the same machine.  The intuition is that if a certain amount of time has

elapsed, then the old user has left the site and a new user has entered.  Empirically derived

timeouts of 25 minutes (1 and 1/2 standard deviates away from a mean of 9.2 minutes between

user interface requests) were first used by [Catledge and Pitkow 1995]. Many commercial log

file analysis programs use similar timeout periods between requests before starting a new user

profile from the same host. We refer to this method as "IP-Timeout."

Given that the majority of users access the Web either through home via an ISP or via a firewall

at work [Pitkow and Kehoe 1996], we hypothesized that these methods would not provide an

accurate identification of users or accurate reconstruction of user paths. Another problem with

using IP or domain addresses as user identifiers is that many ISPs load balance user requests

through a number of proxies.  Within one session, a user may rotate between several proxies,

each with a different IP and domain name.  An example of this occurs with American Online

(AOL), where users are directed through prefix permuted proxy addresses.  Typical entries in log

files for such cases contain hosts like "ww-ta01.proxy.aol.com" and "ww-tl05.proxy.aol.com".

On a randomly selected day during May 1998, the Xerox Web site observed over 230 different

hosts within the "aol.com" domain.  This problem also occurs in environments where IP

addresses are assigned dynamically with short timeouts.  One method for dealing with changing

machine names is to chop the prefixes off domain names and, based upon the IP class (A, B or

B), chop the suffix off IP addresses.  We call this method "Host-munging".
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When using these methods for identifying users, the following situations occur when

sequentially processing access logs:

1) a new IP address is encountered (assume this is a new user),

2) an already processed IP address is encountered

a) the user agent matches prior requests (assume this is the same user),

b) the user agent filed does not match any prior requests form the same IP (assume this is a

new user)

c) when a session is terminated due to a timeout, assume a new user has entered the site.

For this analysis, a list of IP addresses/domain names, user agents, and last access times are

maintained while processing the log file.

Table 1 shows the incidence rate of these cases using the data from the Xerox.com May 1998

data set.  Two sets of occurrence rates are presented in Table 1.  The first shows the average

occurrence rate when all files (Web pages and all embedded images) are taken into account and

the second shows the results when just Web pages are included in the analysis. Note that higher

values do not translate to "better."  Very little variation in the percentages reported occurred

across the data set.  As a percentage of all requests, between 0.93% to 1.73% are from new hosts

with the remainder being repeat requests from these hosts.  Using host-munging reduces the

number of new hosts encountered by nearly a percentage point.  Only 22,000 of the 4.8 million

requests (0.47%) resulted in a session timeout using an inactivity period of 25 minutes.

[Insert Table 1 around here]
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When page views are used as the primary unit of analysis, the number of new hosts increases

significantly to 10.38% of all page requests.  That is, one out of every ten page requests were

from new users. When host-munging is used, the number of new hosts decreases to 5.63%, with

94.37% of the remaining requests being issued from one of these hosts. When the combination of

host-munging and timeouts are used, the number of timeouts decreases to 3.30%.  These findings

imply that half of the new hosts and timeouts were from hosts in the same domain/IP address

space.  From this we can infer, that a large number of Xerox web site users either connect to the

Web via ISPs with load balancing proxies, or that a large number of different users access the

site from within the same domain as would occur with a large company, or that some

combination of both cases exist.

Regardless, a significant number of page requests resulted in ambiguous cases, where it is not

possible to determine the existence of new users with certainty.  While we expect the incidence

rate to vary considerably from Web site to Web site, we find the results concerning since, as we

shall see, these IP-based methods and other IP-based derivatives are used in cases where unique

identifiers like cookies are not present.

2.5 Cookie Counting

When processing a site that is capable of issuing cookies and logging user agents, several

scenarios exist (see Table 2). We denote this class of user identification scenarios "Cookie". For

this analysis, we maintain a list of hosts, agents, and cookies while processing log files, so

changes and new entities can be detected. While the processing of cookies may intuitively seem

simple, it is actually a bit more complicated.

Several cases are possible when a previously encountered cookie is processed.  If the request is

coming from the same host regardless of the user agent, the request is being issued by the same
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user (Case 1).  This is true because a unique cookie is issued to only one browser.  If the user

agent field remains the same but the host changes, it is still the same user (Case 2A) and some

form of IP/domain name changing is occurring.  This often occurs with users behind firewalls

and ISPs that load-balance proxies.  However, if we have the same cookie with a different user

agent, then an error has most likely occurred as cookies are not shared across browsers (Case

2B). If no cookies are present, we resort to the same set of heuristics used by the IP method.  If

the request comes from a known host, then we could have a new user or the same user (Case 3),

otherwise the request is from a different user (Case 4).  It is important to point out that these

latter two cases could also be issued from non-cookie compliant crawling software.

[Insert Table 2 around here]

An interesting set of cases occurs when a new cookie is encountered.  If the request is from a

host that has already been processed and the previous value of the cookie was "-" or "null" and

the user agent is the same, it is fair to conclude that the request is from a new user that just

received their first cookie from the server in the previous request (Case 5A).  If the client is not

using cookie obfuscation software, one would expect the following requests from this user to all

contain the same cookie (Case 1).  However, suppose the previous value from the same host and

agent was a different cookie, it could be the same user obfuscating cookie requests, or a new user

from the same ISP using the same browser version and platform as the user from the previous

request.  Barring any other piece of supporting evidence like the referrer field or consulting the

site’s topology, it is difficult to determine which is the correct scenario (Case 5B).  If the user

agent is different from the previous request, but accompanies a new cookie from the same host, it

is fair to assume that a new user has entered the site (Case 5C).  Of course, a new cookie from a
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new host regardless of the agent is a new user (Case 6) and session timeouts can still occur (Case

7).

Table 3 shows the results of processing the ten days of Xerox.com data.  When all requested files

and cookies are used, 86.56% of all requests originate from the same user on the same host (Case

1).  There was notable variation in this statistic over the course of the sample, with weekdays

showing higher rates (86.65% to 89.31%) and weekends showing lower rates (82.03% to

83.32%).  Inspection of the data revealed that this effect was due to the weekend users being less

likely to be cookie compliant than their weekday counterparts.  There were very few instances of

users switching hosts (Case 2A), and 0.05% of the cases in which the host and user agents

changed though the cookie remained the same.  While technically this should indicate an error

condition, inspection of the log file showed cases in which a user’s requests were being issued

through two separate proxies, each running separate proxy software, and hence appending

different user agent information to the request.

[Insert Table 3 around here]

Slightly over 8% of the all requests did not send any cookie information.  This number increased

to 11% over the weekend.  One percent of users were new to the site from the same host (Case

5A and Case 5C) and just over a percent appear to use some form of cookie obfuscation tool

(Case 5B).  Roughly one percent of all requested files was from new users from new hosts (Case

6). As one would expect when host-munging is used, all cases where different hosts are criteria

showed a decrease.  The number of timeouts that occurred was 0.08% or just 3,682 out of the 4.7

million number of files requested.

As with the IP methods, when only Web pages are considered, the influence of each individual’s

cookie policy increased.  The number of requests being issued from cookie compliant users



14

(Cases 1, 2A, and 2B) decreased nearly twenty percentage points from 87.84% to 68.37% further

revealing the notable difference between hits and page view methods.  The percentage of new

cookies being issued is higher, with Case 5B and Case 6 posting the most gains.  For Case 5B,

notable spikes were observed on the weekends, suggesting the weekend users are more likely to

use cookie obfuscation technologies than weekday users.   For Case 6, the percentage of new

users from different hosts remained stable across weekend/weekday transitions.

As with the hit analysis, the number of cases for page views did not change dramatically for

host-munging or session timeouts.  The exception was that the number of new cookies from new

hosts (Case 6) was lower for host-munging, with those cases being picked up by new cookies

from a known host (Case 5C).  When all techniques are used—cookies, munging, and

timeouts—the same host-munging driven effect occurs.

2.6 Session Length and Number of Clicks Per Session

In the above analyses, we measured the occurrence rate for users within a site for each method,

providing a basis to understand how the construction of individual paths would be affected by

each method.  In this section, we examine the total time a user spends within a Web site, or

"session" and the total number of clicks per session for each method (see Table 4).  It is

important to note that both session time and number of clicks are right skewed distributions, and

as such, the average case as reported by the mean is not the typical case encountered by most

users.  In order to measure the effect of each method, the following five groups were created and

pair-wise Welch two-sample t-tests were performed to compare the statistical similarity of the

resulting session time and number of click distributions for each method:

• IP, Munging-IP, and Timeout-IP
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• Page-IP, Page-Munging-IP, Page-Timeout-IP, Page-and Munging-Timeout-IP

• Cookie, Host-Cookie, and Timeout-Cookie

• Page-Cookie, Page-Munging-Cookie, Page-Timeout-Cookie, and Page-Munging-Timeout-

Cookie

• Page-IP, Page-Munging-Timeout-IP, and Page-Munging-Timeout-Cookie

Except for the Page-Cookie and Page-Munging-Cookie clicks per session comparison, all

distributions had unequal variances.  The only cases that did not result in statistically significant

different means were: a) the Page-Timeout-Cookie and Page-Munging-Timeout-Cookie clicks

per session, and b) Page-IP and Page-Munging-Timeout-IP clicks per session.

Although the occurrence rate for the various IP methods using all requests was small, the impact

of the various heuristics with respect to session times and the number of clicks per session is

large.  When host-munging is used, the median session time jumps from 4.15 minutes to 6.8

minutes.  The increase can be attributed to more requests being incorrectly treated as a single

user.  When timeouts are used, again with the 25 minute default, more distinct users are detected,

and the median session time decreases to 3.03 minutes per user.   The number of clicks per

session suffers the same effect of misidentifying users.  When the pure IP-per-user metric is

used, the median number of clicks is 38, but increases to 48 clicks for host-munging, and

decreases to 30 clicks when timeouts are calculated.

The effect of falsely identifying users continues with page views, where the median session time

is 5.95 minutes using just the IP of the requesting machine.  The increase from page views can be

attributed to the lack of images to inject noise into the inter-arrival time of requests.  As one

might expect, when the IP page view method is combined with host-munging and session
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timeouts, the typical session time drops to 5.08 minutes, which is longer than the timeout method

(4.15 minutes), but shorter than the host-munging method (10.48 minutes).  The impact of the

various strategies is even more pronounced for the number of clicks per user, where the page

view IP method users typically request 6 pages per session versus the 5 pages per session for

host-munging, 1 page per session for timeouts, and 4 pages per session for the combination of all

the methods.  Even at the IP counting level, the impact of the various strategies is quite dramatic

and can vastly sway the basic characterizations of session time and the number of clicks per

session.

[Insert Table 4 around here]

When cookies are used to measure the total number of files requested, the session time drops to

2.7 minutes, with users typically requesting 22 total items from the Web site.  Although host-

munging increase the number of clicks slightly, the variance remains stable with respect to the

other methods.  This suggests that the users are being identified more reliably and not lumping

all requests from within an organization into one user.

In what appears to be the most stable group of methods, the results of the page view analysis

using cookies are quite similar.  While the typical path for the Page-Cookie, Page-Host-Cookie,

and Page-Timeout Cookie methods all yield the same 3 clicks per session, the means are

statistically different, with the reading time showing more variance (4.48 minutes versus 4.92

minutes versus 3.85 minutes respectively).  This increase in variance can play a pivotal role in

simulating Web traffic, where accurately modeling the heavy tail properties is very important.

As noted previously, there was not a significant difference between the Page-Timeout-Cookie

and the Page-Host-Timeout-Cookie methods with respect to the number of clicks per session,

though the reading times were noticeably different (3.85 minutes versus 4.06 minutes
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respectively).  This finding underlies one of the weaknesses of comparing the metrics of clicks

and total visit time: these metrics do not speak directly to the correctness of the paths generated

by each method.

2.7 Levenshtein Distance

We use the Levenshtein (or edit) Distance [Levenshtein 1966] to measure the similarity between

the paths identified by the most promising path reconstruction methods. LD provides a quick

method for judging the closeness of two arbitrary length strings based upon the number of

insertions, deletions, and changes/reversals that are necessary to convert one string to another.

For a string s, let s(i) stand for its ith character. For two characters a and b, define

changebarotherwisebaifbar ==== ),(;0),(

where change is a language-specific weighting parameter, typically set to one.  Assume we are

given two strings s and t of length n and m, respectively. We are going to fill an (n+1) by (m+1)

array d with integers such that the low right corner element d(n+1, m+1) will furnish the required

values of the Levenshtein Distance L(s,t). The definition of entries of d is recursive. First set

d(i,0)=i, i=0,1,...,n, and d(0,j)=j, j=0,1,...,m. For other pairs i,j use

)))(),(()1,1(,)1,(,),1(min(),( jtssrjidadditionjiddeletionjidjid +−−+−+−=

Typically change, deletion and addition are set to one to place equal importance upon insertions,

deletions, and changes. We used one as the value for these weightings in our investigations.

One of the nice properties is that the numeric similarity produced by LD defines a metric space.

A space X is metric if there is defined a real non-negative function of two variables d(A,B). The
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function is known as the distance between the two points. It is characterized by the following

properties. For ,, XBXA ∈∈ XC ∈

1. d(A,B)=0 if and only if A==B. (the distance is 0 if and only if the points coincide)

2. d(A,B)=d(B,A) (the distance from A to B is the same as the distance from B to A)

3. d(A,B)+d(B,C)>=d(A,C) (the sum of two sides of a triangle is never less than the third

side.)

In order to test the similarity of the paths generated by each method, the following comparisons

were made (see Table 5). "Standard" refers to counting methods that are typically employed by

various logfile analysis programs and "Modified" refers to the paths generated by the most

promising methods in this study.  The LD was computed for each path generated by the standard

method against all the paths generated by the modified method for the same host with

replacement.  One should note that this is very forgiving method of comparison as it increases

the likelihood that a standard path will match a modified path.  A more conservative approach

would match without replacement, i.e., once a standard path matches a modified path, the

modified path is removed from further comparisons for that host.

[Insert Table 5 around here]

The comparison between treating each host-munged IP with 25 minute session timeouts against

using cookie with host-munging and the same session timeouts resulted in an average of 1.54

insertions, deletions, or changes per every paths considered.  Incorrectly guessing a portion of

the path was the most common form of modification and occurred in almost half of those cases

(0.87). The average Levenshtein Distance per page calculation determines the likelihood that for

each page in a path an edit of some sort will occur.  It is not surprising given that most paths are
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short (median of 2 clicks), there is a one in four chance that using IP counting will result in an

incorrect modification to a user’s path.

When cookies are compared to the modified version that uses host-munging and session

timeouts, the number of edits decreases significantly.  As with the previous comparison,

reversals occur with a higher frequency than additions or deletions, though we were unable to

determine the exact reason. The average number of edits per page using the standard cookie-per-

user algorithm was only 0.0319 edits/page, though for each path, this number increased to 0.29

edits per path.  While the number of edits per path certainly decreases when the standard cookie

algorithm is employed, the numberof incorrect paths generated is still concerning, indicating that

simple cookie-based path reconstruction is not as straight-forward as one might initially think.

In the above sections, we presented empirical evidence that suggests the methods used to identify

users and reconstruct paths have significant impact on basic characterizations of users’ surfing

behaviors as well as the reconstructed surfing paths.  While the numbers presented for the

Xerox.com Web site are by no means meant to be absolute with respect to other sites, it does

provide an initial glimpse into the various cases associated with the dynamics of cookie and IP-

based reconstruction methods.  Having established the impact of various path reconstruction

algorithms, we now turn our attention towards the assumptions being made about modeling

surfing behaviors.

3. Distribution of Users over Links from a Page

Imagine the users who visit a page on the WWW who then decide to surf to other pages linked to

that page.  They process the content of the visited page and, based on some decision, click on a

hyperlink that takes them to another page.  On the one hand, it may be plausible to assume that

every link emanating from that page would get chosen an equal number of times over the course
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of visits from many users. After all, although users may have different interests, their interests

may be uniformly distributed over links when we aggregate over very large numbers of users.

On the other hand, the population of users that visit a WWW page may have some systematic

bias in their pattern of interest.  Some links from a page may be generally more relevant than

others, for that particular population of visitors.  A similar bias result from systematic biases

imposed by the structure of the interface to WWW content.  For instance, it seems plausible to

assume that users process displayed WWW pages in a relatively common and systematic manner

(e.g., top-down and left-to-right).  Such systematic interaction patterns might introduce biases in

the patterns of observed link-following behavior.  For instance, links encountered earlier in

reading a page might have a higher likelihood of being selected than later ones, even when they

are of equal relevance to the user.

Existing models make different assumptions about how users distribute themselves over links

from a page.  The algorithms used in Google [Brin and Page 1998] and Clever [Kleinberg 1998]

assume that the links emanating from a page are equally weighted with respect to user interests,

document relevance, or likelihood of being pursued.  Spreading activation models [Pirolli et al.

1996; Huberman et al. 1998] allow for systematic biases.  We now turn to an investigation of

these assumptions.

 [Insert Figure 2 around here]

3.1 Goodness-of-fit of Uniform Distribution Model

Figure 2 presents a series of histograms of the observed proportions of users who choose links

emanating from pages.  We only include data for surfers who move from one page to the next

(rather than leave the web site). Each histogram displays a set of Web pages classified by their
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number of outlinks (links emanating from a page).  All Web pages with two outlinks are

characterized by one histogram, all with three outlinks another histogram, and so on up to pages

with 16 outlinks as the number of pages within the Xerox site with more than 16 links was

nominal.   We have ignored pages with just one outlink since all continuing surfers will follow

that link. Pages with greater than 16 outlinks are ignored.  On each histogram, we have also

marked, using a vertical line from top to bottom of each chart, the expected proportion of users

who should follow links if they chose links with uniform weighting.  For instance, for pages with

two links, 0.5 of the users should choose each link, and in general, the expected proportion of

users choosing links will be 1/(number of links).

In Figure 2, it seems that the modes of the observed distributions are close to the values expected

by assuming a uniform distribution.  However, the observed distributions also appear to be

skewed, with a few large observed proportions and many small observed proportions.  We

computed χ2 tests to determine the goodness-of-fit of the uniform distribution assumption.  For

each page i, we let ni be the number of users observed to continue on to linked pages (for our

data set), Li the number of links emanating from i, and pil = 1/Li be the expected proportion of

users who will choose each of the l =  1, 2, …Li links.  We let the expected frequency of users

who travel any given link be,

  Eil = ni pil (1)

and the corresponding observed frequencies of users traveling the same links, obtained from our

data, are Oil .

Table 6 summarizes our χ2 tests. Pages were categorized according to the number of links

emanating from them, as indicated in Table 6.  From exploration of the expected frequency

distributions, we chose to partition the observed and expected distributions into k = 1,2,… 7 bins
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(to avoid bins with zero expected frequencies), and pooled the expected Eil and observed Oil

into those bins to give us aggregate Ek and Ok for each k = 1, 2, …7 bins.   For each category of

pages, we calculated the goodness-of-fit χ2 statistics in Table 1 using Ek and Ok.

All of the values of χ2 are significant at p < .001, indicating a poor fit of the uniform distribution

to the observed distribution of users over links.  Moreover, the χ2  values generally become

larger with increasing number of links from a page, indicating greater deviations from the

uniform distribution.  Models that capture the non-uniform distribution of users surfing to linked

pages should provide better fits to observations.  Of course, the increased accuracy comes at the

cost of more free parameters to be estimated from data.

4. Information Contained in Surfing Paths

Our analysis of how surfers distribute themselves over outlinks considered the probability of

transitioning down a link given only knowledge of the page currently visited.  Longer sequences

of surfers' previous page visits might provide more information about their next transition down

a hyperlink.  In this case, users can be thought of as building context for future page requests, or

as part of some goal-directed behavior.  For instance, if we saw that a surfer had visited a

sequence of pages dealing with cars rather than a sequence dealing with books, we might predict

that their future transitions are likely to deal with cars too.

We can think of these surfing paths as n-grams. Such n-grams can be represented tuples of the

form <X1, X2, … Xn> to indicate sequences of page clicks by a population of users visiting a web

site.  Each of the components take on specific values Xi = xi for a specific surfing path taken by a

specific user on a specific visit to the web site.  Our last analysis of the distribution of users over
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outlinks considered n-grams of the form <X1, X2> where X1 was the current page visited by a

surfer and X2 was the page surfed to by transitioning down an outlink.

Users often surf over more than one page at a web site.  We may record surfing n-grams, <X1, X2,

… Xn> of any length observable in practice.  Assume we define these n-grams as corresponding

to individual surfing sessions by individual users.  That is, each surfing session is comprised of a

sequence of visits made by a surfer, with no significantly long pauses.  Over the course of a data

collection period—say a day—one finds that the lengths, n, of surfing paths will be distributed as

an inverse Gaussian function , as in Figure 3.  This appears to be a universal law that is predicted

from general assumptions about the foraging decisions made by individual surfers [Huberman, et

al. 1998].  From Figure 3 it is apparent that the bulk of recorded n-grams will be very short,

although there will be a few very long surfing n-grams.

[Insert Figure 3 around here]

4.1 Entropy Analysis:  kth Order Markov Approximations

In our analysis of surfers distributing themselves over outlinks, we were concerned with n-grams

of the form <X1, X2> and, more specifically, with the probability of transitioning to X2 given that

the surfer was visiting X1.  That is, we were interested in the conditional probabilities,

p(x2 | x1) = Pr(X2 = x2 | X1 = x1 ) . (2)

We can generalize this to a concern with the conditional probability that a surfer transitions to an

nth page given their previous k = n-1 page visits:

p(xn | xn−1,...xn −k ) = Pr(Xn = xn | Xn−1,..., Xn− k ) (3)
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Such conditional probabilities are known as kth-order Markov approximations (or kth-order

Markov models).  The zeroth order Markov model is just the unconditional base rate probability:

p(xn ) = Pr(Xn ) , (4)

or, in our case, the simple probability of a page visit.  This might be estimated as the proportion

of times a page is visited over the course of some time period.

Xn  is thought of as a random variable whose values, Xn = xn, indicate which page will be visited

by a surfer.  For a given kth-order Markov model we may ask how much uncertainty there is

about the values of Xn, and investigate how this uncertainty changes as we increase k, the length

of the previous sequence of visits used to predict Xn in a conditional probability.  This can be

accomplished by analyzing the entropy or conditional entropy of the models.

The entropy H(X) of a single random variable, X, is the expected (average) uncertainty of the

random variable:

H(X) = E log2

1

p(X)

 
 
  

 

= p(x) log2

1

p(x)x ∈X
∑

= − p(x)log2 p(x)
x ∈X
∑

(5)

which is measured in bits.  One way to think of entropy is that it provides an indication of the

minimal coding that would be required to represent the state of Xn.  Higher bit values indicate

higher uncertainty about the state of Xn and the fact that it would require more coding to

represent the state of Xn.   For instance, the values taken on by throws of two dice have higher

entropy than the values taken on by throws of one die.  It would take a code of more bits to

minimally distinguish the states of two dice than the states of one die.
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For our analysis of kth-order Markov models of surfing n-grams, we will also need to compute

conditional entropy H(Xn | Xn−1,..., Xn−k ) .  In our case, this can be interpreted as the amount of

uncertainty about Xn that remains after we know that a surfer has visited k previous pages.  The

conditional entropy can be calculated by

H(Xn | Xn−1,...Xn −k ) = p(xn )H(Xn | Xn−1 = xn−1,..., Xn− k = xn− k )
xn ∈Xn

∑ , (6)

and by using the chain rule for entropy

),...,|()|()(),...,( 111211 −+Λ++= nnn XXXHXXHXHXXH (7)

which involves the joint entropy of variables,

H(X,Y ) = − p(x, y)log2 p(x,y)
y ∈Y
∑

x ∈X
∑ , (8)

where p(x,y) = Pr(X = x, Y = y) is the joint probability of the random variables X and Y.

If we model surfing paths by kth order Markov models, then we can use these entropy and

conditional entropy measurements.  To measure the amount of uncertainty that remains in

predicting Xn if we know surfers’ k previous page visits then:

zeroth order: H(Xn)  (based on the probability that page is visited regardless of path),

first order: H(Xn | Xn−1),

second order: H(Xn | Xn−1, Xn− 2 ),

kth order: H(Xn | Xn−1,..., Xn−k ) .
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Table 7 presents results of an entropy and conditional entropy analysis of the Xerox.com data for

May 10, 1998 through May 19, 1998.  In Table 7 we have stratified the data according to the

length of the n-gram obtained from individual surfers’ visits.  For each length of n-gram, we then

calculated the entropy and conditional-entropy for models of order zero up to length n.  That is,

we considered all models of order 0 • k • n-1 for each class of surfing n-gram of length n =

2,…,10 surfing transitions.  Note, however, that the size of the reduction (in terms of bits)

diminishes: The largest reduction in entropy is obtained by moving from a zeroth-order model to

a first-order model, less reduction is obtained by moving from a first-order to second-order

model, and so on.

[Insert Table 7 around here]

As with the analysis of surfing distributions over outlinks, we find the ubiquitous trade-off in

model complexity with model accuracy.  If we model longer paths we can reduce uncertainty in

predicting future visits, but the models become more complex and will require greater computing

to estimate and greater storage to represent.  The entropy measurement provided us with a

characterization of the complexity of the model and its match to the data. By examining how this

changes with the length of the path modeled, we may make practical decisions about the

complexity of model to use, given constraints of data collection, storage costs, and computing

power.

4.2 Stability of Surfing Distributions Over Time

In the analysis of kth order Markov models of surfing paths, we computed the relevant estimators

for our probabilities directly from the data (these were maximum likelihood estimators) for a

particular day at a particular web site. To use these models and estimators to predict activity on
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future days on the web site requires assumptions that the stochastic processes generating the

surfing paths are stationary and ergodic.   Stationary stochastic processes are ones that do not

change over time.  Ergodic processes are ones in which states recur eventually.

It is rather unlikely that surfing patterns and the WWW fulfill these assumptions.  Web sites

change and the population of visitors and their interests probably change too.  We can build upon

the previous kind of analysis to investigate how much change occurs over days.  The basic

approach is to collect surfing path n-grams from one time period, estimate kth order Markov

models of the probabilities that surfers transition to page n given their k previous page visits, and

then see how well the estimated probability distributions match those for future time periods.

There are a number of ways to compute the similarity (or more commonly, the dissimilarity) of

two probability distributions.    One common approach is the Kullback-Leibler formula for

relative entropy, which characterizes the mutual information in two probability (mass)

distributions.  The Kullback-Leibler divergence (dissimilarity) of two distributions, p and q, is

D(p||q) where,

D( p || q ) = pi log2

pi

qi
i∑ . (9)

Comparing Equation 9 to Equation 5, one should recognize that this is another entropy measure.

Unfortunately, application of this formula is problematic when there are zero probabilities for

one of the distributions (i.e., q). This occurs often with our surfing data—for instance, pages that

are visited on one day may not be visited the next.    Instead of the Kullback-Leibler measure, we

have used total divergence to the average (TDA).  The divergence (dissimilarity) of two

distributions is:
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TDA(p,q) = TDA(q, p)

= D p
p + q

2

 
 

 
 

+ D q
p + q

2

 
 

 
 

.
(10)

This overcomes the problems of zero probabilities and, unlike Kullback-Lebler divergence, it is

symmetric.  TDA ranges from zero to 2 log 2 for maximally different distributions.

We conducted TDA analyses on the set of data collected from Xerox.com for the dates 5/10/98

through 5/19/98.  We designated the data sets as Day 1 (5/10/98) through Day 10 (5/19/98).  We

then estimated the kth-order Markov models on data from one day (the training set) and measured

its TDA against kth-order Markov models estimated from another day (the test set).  We did this

at several levels of days of delay between the training set and test set: Delay = 1, 2, 5, or 10 days

of delay (this is an approximately logarithmic sequence of delays).  We did this in two ways:  (a)

by using Day 1 as the training set and various days (Days 2, 3, 6, and 10) as the test sets, and (b)

by using Day 10 as the test set and various days (Day 9, 8, 5, and 1) as the training set (note that

the Day 1 to Day 10 comparison is redundant).

Again, we stratified the data by surfing n-grams ranging from n = 2 to 10, and we examined kth

order Markov models for k = 1 to 9.  Figure 4 presents the TDAs for each of the training-test

comparisons.  Figure 5 presents the kth-order Markov models over days of delay between training

and test.  In Figure 5, for the sake of clarity, we only present the data for the longest kth-order

models estimated for each class of n-gram—that is, for n-grams of length n we present the k = n-

1 order model.

From Figure 4 and Figure 5 it is apparent that the first-order Markov models show the least

divergence between training and test.  Overall, the divergence between training and test for

appears to increase in the same way for all orders of model at all levels of delay with both

variable training sets and variable test sets.
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The TDAs for the 7th order, 8th order, and 9th order Markov models appear anomalous in

comparison to the lower order models.    It appears that the dissimilarity across days in these

higher-order models is much greater than expected if we just extrapolated from the lower order

models.

[Insert Figure 4 around here]

Interestingly, if we ignore the anomalous data, Figure 4 suggests that on the longer n-grams, the

worst divergences between training and test occur at the midranges of k.  Recall that we are

estimating the probability of a visit to page n given knowledge of the immediately prior k page

visits of surfers, of p(xn|xn-1,…xn-k ) .  Figure 4 suggests that on longer n-grams, knowledge of

longer lengths of prior visits  (large k) or shorter lengths of prior visits (small k) shows less

divergence over training to test than middle-sized lengths of prior visits (intermediate k).  This

might indicate that knowledge of the starting visits of surfers and knowledge of the visits made

immediately prior to a transition are most stable and important to making accurate estimates of a

visit to page n, for longer length n-grams.

[Insert Figure 5 around here]

4.3 Predicting Future Visits Using kth-order Markov Models of Past Surfing Paths

To provide a more concrete examination of these Markov models of surfing paths we consider a

simple prediction scenario.  Imagine that we estimate some kth order Markov models of surfing

transitions from training data and we want to use these to predict visits of surfers in the future.

Suppose we have just observed a surfer make k page visits.  In order to make a prediction of the

next page visit we want to have an estimate of p(xn|xn-1,…xn-k ) from our training data.  This will
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require, however, that this particular path of k visits <xn-1,…xn-k> was observed in the training

data.  Let us call this sequence <xn-1,…xn-k> a penultimate path.  Let us call the match of a

penultimate path on a test day to the same penultimate path in training data a penultimate path

match  (PPM).  Continuing our scenario, if we have a penultimate path match, we examine all

the conditional probabilities p(xn|xn-1,…xn-k ) available for all pages xn,  and predict that the

particular page having the highest conditional probability of occurring next will in fact be visited

next.  If we then observe that the surfer makes the predicted visit, then we say we have a hit (as

opposed to a miss).

From training data we estimated p(xn|xn-1,…xn-k ) from all available n-grams of lengths n =

1,…10.  Against separate test data we estimated the following probabilities of interest:

• Pr(PPM) the probability that a penultimate path, <xn-1,…xn-k>,  observed in the test data was

matched by the same penultimate path in the training data,

• Pr(Hit|PPM) the probability that page xn is visited, given that <xn-1,…xn-k>,  is the penultimate

path and the highest probability conditional on that path is p(xn|xn-1,…xn-k ),

• Pr(Hit) = Pr(Hit|PPM)•Pr(PPM), the probability that the page visited in the test set is the one

estimated from the training as the most likely to occur (in accordance with the method in our

scenario).

Figure 6 presents Pr(PPM), Pr(Hit|PPM), and Pr(Hit) for various training-test delays.  As in our

TDA analysis, we used Day 1 as a fixed training set and then tested our estimates at various

delays (1, 2, 5, or 9 days), and we used Day 10 as a fixed test set and used various training sets to

provide the same delays.  All three probabilities drop as one increases the delay between the

training set and test set, although the size of these reductions is not great.  The size of the

reductions generally diminishes with increasing delay.  As indicated by the Pr(PPM), as one
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increases the length of the penultimate path (or equivalently, the order of the model), there is a

marked decrease in the probability of finding a matching path in the training and test data sets.

This is the major determinant in the superior Pr(Hit) estimates for lower-order models.

Figure 7 shows the improvements in prediction between training and test as a function of

increasing the size of the training data set.  Notice that the first order model does not improve as

much as the 2nd, 3rd, 4th, 5th, 6th, or 7th order models.  This is because the probability of finding a

penultimate path match, Pr(PPM), between training and test data is practically at ceiling for the

first-order model with only one day of training data . As shown in Figure 8, the gains in

predicting hits in Figure 7 are largely attributable to gains in finding matching surfing paths

across the training and test data.

[Insert Figure 6 around here]

[Insert Figure 7 around here]

[Insert Figure 8 around here]

5. Conclusions

In this paper, we presented a number of studies that investigate various aspects of WWW user

surfing paths.  Several path reconstruction algorithms were demonstrated to have significant

impact on basic characterizations like session times and the number of clicks per session.

Levenshtein Distance was used to further understand the differences between the various

approaches.  While the purpose of these investigations was not to motivate a particular algorithm
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over another, our findings do reveal that careful choice must be taken when reconstructing user

paths through WWW sites.

Researchers are beginning to develop models aimed at predicting the interests of surfers.

Sometimes these models are based just on the hyperlink structure of the WWW [Brin and Page

1998] and sometimes they are based on statistics drawn from usage patterns [Huberman et al.

1998; Padmanabhan and Mogul 1996].  The assumptions for these models seem to be that surfers

will follow WWW structure in similar ways, or that surfers will exhibit the same paths as earlier

surfers.  We presented a preliminary investigation of such assumptions by using a Markov model

representation.  Such models are well understood, but have strong (usually testable) assumptions.

They provide a good initial basis for exploring the stochastic processes of surfing.

In the context of these models and their assumptions, we used entropy and conditional entropy as

a way of measuring the uncertainty in predicting surfer visits, and the reduction in uncertainty

obtained by making our making predictions conditional on longer surfing paths.  Measurements

of divergence (TDA) provide a way of investigating the stability of surfing path distributions

over time.  A set of analyses and methods was also presented that began to uncover the impact of

various path generation techniques on the overall integrity of paths collected.

Our information-theoretic measurements (entropy and TDA) suggest that information is gained

by using longer paths to estimate the conditional probability of link choice given surf path.  The

improvements diminish, however, as one increases the length of path beyond one.  Information-

theoretic measurements suggest that the conditional probabilities of link choice given surf path

are more stable over time for shorter paths than longer paths.  Direct examination of the accuracy
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of the conditional probability models in predicting test data also suggested that shorter paths

yield more stable models and can be estimated reliably with less data than longer paths.

It is important to note that we have used Markov models as a framework for stating empirical

characterizations.  We are not necessarily advocating their appropriateness as descriptive models

of surfing behavior.  Like human language, surfing activity may have a deeper structure

("grammar") or intentional ("meaning" or "purpose") that can be derived from the simple

statistics of surface behavior.  We can still, however, use measurements like entropy to

characterize the fit and complexity of these deeper models, if and when they are developed.
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Figure Captions

Figure 1. Model of WWW traversals. A conceptual model of surfers traversing a web site.

Figure 2. Estimated surfer transition probabilities. Histograms of estimated surfer transition

probabilities for links emanating from pages at the Xerox.com web site over the May 10,1998

through May 19, 1998 period.  Pages are categorized by the number of outlinks.  The vertical

lines indicate the transition probabilities expected by a uniform distribution model.

Figure 3. The Law of Surfing. The Cumulative Distribution Function of AOL users as a function

of the number of clicks surfing (Huberman, Pirolli et al. 1998).  The observed data were

collected on December 5, 1997 from a representative sample of 23,692 AOL users who made

3,247,054 clicks. The fitted inverse Gaussian distribution has a mean of µ = 2.98 and λ = 6.24.

Figure 4. TDA Analysis. TDA analysis of divergence of training and test estimates of

Markov approximations to surfing paths observed at the Xerox.com web site 5/10/98

through 5/19/98.  See text for details.

Figure 5. TDA analysis of divergence in distribution of surfing path probabilities over

varying delays between training and test estimates.  See text for details.

Figure 6. Analysis effects of delay between training and test data sets for a prediction

scenario using kth order Markov models.  See text for details.

Figure 7. Effects of increasing the number of days of training on predicting visits based on

surfing paths.  See text for details

Figure 8. Effects of increasing the number of days of training on the probability of finding

matching surfing paths. See text for details.
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Table 1. Effects of various IP based counting methods as applied to all the requests and only

page requests received by the Xerox web site from May 10, 1998 through May  19, 1998.  The

data shows the occurrence rate in the form of percentages for each case (same host, different

host, and session timeout).

Method Same Host New Host Session Timeout

All File Results

IP 98.27% 1.73% —

Host-Munging-IP 99.07% 0.93% —

IP-Timeout 97.80% 1.72% 0.47%

Page Results

IP 89.62% 10.38% —

Host-Munging-IP 94.37% 5.63% —

Timeout-IP 88.45% 5.51% 6.04%

Host-Munging-Timeout-IP 91.25% 5.45% 3.30%
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Table 2. The set of possible scenarios for determining users when a site is capable of issuing

cookies and recording the user agent field.

Case Cookie Host Agent Conclusion

1 Same Cookie Same Host Not significant Same User

2 A Same Cookie Different Host Same Agent Same User

2 B Same Cookie Different Host Different
Agent

Error

3 No Cookie Same Host Not significant Uncertain

4 No Cookie Different Host Not significant Different User

5 A New Cookie prior
cookie value "-"  from
host

Same Host Same Agent New user
previously issued
first cookie

5 B New Cookie prior
cookie value from host
not "-"

Same Host Same Agent Uncertain

5 C New Cookie, prior
cookie value from host
not "-"

Same Host Agent changes Different User

6 New Cookie Different Host Not significant Different user
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Table 3. Effects of various cookie based counting methods as applied to all the requests and only

page requests received by the Xerox web site from May 10, 1998 through May 19, 1998. The

data shows the occurrence rate in the form of percentages for each of the ten possible cases.

Method 1 2 A 2B 3 4 5 A 5 B 5 C 6 7

(Number express the percentage of all requests)

All Files Results

Cookie 86.56 1.23 0.05 7.99 0.56 0.45 1.29 0.52 1.37 —

Host-Munging-Cookie 87.67 0.14 0.02 8.23 0.32 0.44 1.26 1.15 0.78 —

Timeout-Cookie 86.49 1.23 0.05 7.98 0.55 0.45 1.29 0.51 1.37 0.08

Page-Cookie 66.88 1.45 0.04 6.17 2.96 1.89 8.72 3.21 8.68 —

Page Results

Host-Munging-Cookie 68.15 0.20 0.01 7.39 1.75 1.89 8.54 7.11 4.96 —

Timeout-Cookie 66.69 1.44 0.04 6.15 2.95 1.88 8.69 3.20 8.65 0.29

Host-Munging-Timeout-
Cookie

67.72 0.20 0.01 7.34 1.74 1.88 8.48 7.07 4.93 0.64
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Table 4. The number of clicks per session and the total time per session for all methods using the

Xerox web site May 1998 data.

Median Mean St. Dev Median Mean Stan. DevMethod

Clicks Session Time

All Files Results

IP 38 59.68 289.57 249 4074 12635.22

Host-Munging-IP 48 106.10 782.20 412 8580 18098.17

IP-Timeout 30 46.74 251.78 182 604.6 3229.59

Cookie 22 33.89 68.86 162 1684 6744.78

Host-Munging-Cookie 23 34.89 70.18 178 2084 7541.36

Timeout-Cookie 21 31.35 65.20 137 706.5 3862.45

Page Results

IP 5 9.79 78.75 357 4358 12678.60

Host-Munging-IP 6 17.31 199.63 629 9491 18624.43

Timeout-IP 1 1.01 0.88 249 356.4 2460.345

Host-Munging-Timeout-IP 4 10.94 156.75 305 932.6 3903.87

Cookie 3 5.812 13.45 269 1899 6708.37

Host-Munging-Cookie 3 5.96 13.51 295 2368 7647.17

Timeout-Cookie 3 5.41 12.66 231 898.2 4311.14

Host-Munging-Timeout-
Cookie

3 5.46 12.56 244 1016 4397.26
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Table 5. Levenshtein Distance comparisons of the most commonly used methods (Standard)

against the most promising methods identified in this study (Modified).  Only page views were

used for the comparisons.

Standard Modified Mean Max Stan Dev Sum

Host-Timeout-IP Host-Timeout-Cookie

Changes per Path 0.8721 190 6.09 26415

Deletions per Path 0.0092 22 0.23 646

Insertions per Path 0.6479 170 5.41 45290

LD Edits per Path 1.5370 190 8.61 107414

Average LD per Page 0.2587 181 2.86 18085

Cookie Host-Timeout-Cookie

Changes per Path 0.1691 92 1.40 6993

Deletions per Path 0.0068 11 0.13 283

Insertions per Path 0.1131 81 1.25 4676

LD Edits per Path 0.2891 94 1.96 11952

Average LD per Page 0.0319 11 0.16 1321
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Table 6. Goodness-of-fit tests of a model of surfers transitioning page outlinks with uniform

probability.  Note:  p < .001 at values greater than χ2 (6) = 22.46.

No. Links, Li χ2 (df = 6)

0 < Li ≤ 3 25.21

3 < Li ≤ 6 26.44

6 < Li ≤ 9 172.99

9 < Li ≤ 12 59.70

12 < Li 3666.30
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Table 7. Entropy and conditional entropy estimates (in bits) for kth order Markov models of the

Xerox.com data from May 10, 1998 through May 19, 1998.

kth Order Model

Length
n-gram

0th 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

2 7.89 3.25

3 8.01 3.28 2.40

4 8.14 3.29 2.33 1.62

5 8.18 3.29 2.24 1.46 0.79

6 8.20 3.28 2.16 1.33 0.64 0.37

7 8.21 3.28 2.10 1.24 0.55 0.29 0.14

8 8.20 3.27 2.04 1.16 0.48 0.24 0.11 0.07

9 8.20 3.27 2.01 1.11 0.44 0.22 0.09 0.05 0.03

10 8.19 3.25 1.95 1.04 0.40 0.19 0.08 0.04 0.02 0.02


